Poststroke Grasp Ability Assessment Using an Intelligent Data Glove Based on Action Research Arm Test: Development, Algorithms, and Experiments
Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 69; no. 2; pp. 945 - 954 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2021.3110432 |
Cover
| Abstract | Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation. |
|---|---|
| AbstractList | Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation. Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation.Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation. |
| Author | Aruchamy, Srinivasan Dutta, Debeshi Sen, Soumen Mandal, Soumen |
| Author_xml | – sequence: 1 givenname: Debeshi surname: Dutta fullname: Dutta, Debeshi organization: Academy of Scientific and Innovative Research (AcSIR), India – sequence: 2 givenname: Srinivasan surname: Aruchamy fullname: Aruchamy, Srinivasan organization: CSIR-Central Mechanical Engineering Research Institute, India – sequence: 3 givenname: Soumen surname: Mandal fullname: Mandal, Soumen organization: CSIR-Central Mechanical Engineering Research Institute, Durgapur, India – sequence: 4 givenname: Soumen orcidid: 0000-0003-4906-7727 surname: Sen fullname: Sen, Soumen email: soumen_sen@cmeri.res.in organization: Robotics and Automation Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34495824$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kk1vEzEQhi1URNPCD0BIyBIXDt3gz_3obduGUKkIhNLzyuudpC6b9eJxKvor-Mt4ldBDD5xGYz_veGZen5CjwQ9AyFvO5pyz6tPq4utiLpjgc5lyJcULMuNal5nQkh-RGWO8zCpRqWNygnifUlWq_BU5lkpVuhRqRv589xgxBv8T6DIYHGndut7FR1ojAuIWhkhv0Q0bagZ6PUToe7eZDq9MNHTZ-wegFwaho36gtY0uhR-AYIK9o3XY0hVgPKdX8AC9H6dyZ7TuNz64eLfFs1S1o4vfIwQ33eFr8nJteoQ3h3hKbj8vVpdfsptvy-vL-iazUlUxU8xOIwu-1rasiqpQnZRQljzPodO2WIMs25aXhjHdsrzjQhkDTBttlQbQ8pR83Ncdg_-1Sy02W4c2DWcG8DtshC440zqXeUI_PEPv_S4MqbtG5IIXVZ7QRL0_ULt2C10zpoFMeGz-rToBfA_Y4BEDrJ8QzprJzmays5nsbA52Jk3xTGNdNNOOYzCu_6_y3V7pAODppSr9C5Yr-RfhBqwC |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_3390_app13010553 crossref_primary_10_1109_JSEN_2024_3523512 crossref_primary_10_1109_TMI_2024_3395348 crossref_primary_10_3390_robotics12060169 crossref_primary_10_3389_fnins_2024_1362495 crossref_primary_10_3390_s22103604 crossref_primary_10_1109_THMS_2024_3394674 crossref_primary_10_1016_j_sna_2024_115121 crossref_primary_10_1109_TIM_2024_3400361 crossref_primary_10_3390_s22239078 crossref_primary_10_1109_TIM_2023_3243614 crossref_primary_10_3390_mi14091697 crossref_primary_10_3390_s24134378 |
| Cites_doi | 10.1186/s12984-019-0612-y 10.4103/0972-2327.168631 10.1002/14651858.cd000197.pub4 10.1371/journal.pone.0214651 10.1016/j.procs.2014.08.048 10.1109/IEMBS.2010.5626446 10.1016/j.jbi.2018.07.014 10.1109/ICCECE48148.2020.9223073 10.1109/TNSRE.2019.2939202 10.1109/TBME.2011.2160723 10.1191/0269215505cr832oa 10.5014/ajot.39.6.386 10.1186/1743-0003-9-21 10.3390/s16020202 10.1109/TNSRE.2017.2755667 10.1177/1545968307305353 10.3200/35-09-004-RC 10.1007/s13244-018-0639-9 10.1080/03610929208830963 10.1016/S0167-9457(97)00010-9 10.1161/01.STR.0000143153.76460.7d 10.1109/ICORR.2017.8009444 10.2340/1650197771331 10.1109/IEMBS.2011.6091444 10.1007/s10462-007-9052-3 10.3389/fbioe.2020.00664 10.2147/CIA.S32405 10.1002/asi.10242 10.1016/S2214-109X(13)70089-5 10.1109/TBME.2020.3027853 10.1109/TBME.2015.2477095 10.1007/978-1-4302-5990-9_3 10.1016/j.cmpb.2016.02.012 10.1038/s41598-019-56862-5 10.3390/s18010018 10.1109/TNSRE.2020.2966950 10.1186/1743-0003-11-144 10.1109/TBME.2019.2899927 10.5853/jos.2013.15.3.128 10.1519/JPT.0000000000000067 10.1186/1471-2105-9-319 10.1097/00004356-198112000-00001 10.1109/JPROC.2009.2038727 10.1063/1.4822961 10.1016/S1474-4422(09)70025-0 10.1109/TNSRE.2017.2720727 10.1109/BSN.2006.57 10.3390/e20050377 10.1038/micronano.2016.43 10.1109/TBME.2012.2208750 10.1016/j.ecolmodel.2006.11.033 10.4135/9781446247501.n3784 10.1161/01.STR.24.1.58 10.1016/j.jht.2012.06.005 10.1371/journal.pone.0096414 10.3109/09638288.2016.1138550 10.1016/j.bbe.2016.09.005 10.1016/j.medengphy.2016.12.011 10.1109/TNNLS.2014.2336665 10.1023/A:1008280620621 10.1021/ac00234a011 10.5772/67577 10.1186/s12984-016-0182-1 10.1310/tsr2101-12 10.1007/s11766-003-0059-5 10.3346/jkms.2015.30.S2.S139 10.3390/s19092186 10.1038/s41598-018-34671-6 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TBME.2021.3110432 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 954 |
| ExternalDocumentID | 34495824 10_1109_TBME_2021_3110432 9531064 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: CSIR-Central Mechanical Engineering Research Institute and Department of Science and Technology, Govt. of India – fundername: Indo-Korean joint network center on robotics'-Node 3 – fundername: INT/KOREA/JNC/Robotics |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM PKN RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-40c311021f5c897974d33e88166ed5c7fe38bb18a005b06d124aae05a5c45ee53 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Thu Oct 02 11:34:22 EDT 2025 Mon Jun 30 08:30:37 EDT 2025 Wed Feb 19 02:27:30 EST 2025 Thu Apr 24 22:52:34 EDT 2025 Wed Oct 01 04:08:53 EDT 2025 Wed Aug 27 03:02:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-40c311021f5c897974d33e88166ed5c7fe38bb18a005b06d124aae05a5c45ee53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4906-7727 |
| PMID | 34495824 |
| PQID | 2621796710 |
| PQPubID | 85474 |
| PageCount | 10 |
| ParticipantIDs | pubmed_primary_34495824 proquest_miscellaneous_2571055636 ieee_primary_9531064 proquest_journals_2621796710 crossref_primary_10_1109_TBME_2021_3110432 crossref_citationtrail_10_1109_TBME_2021_3110432 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 Rauch (ref2) 2008; 44 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Shihong (ref69) 2003; 18 ref49 ref8 ref7 ref9 ref4 Kononenko (ref66) 1997; 7 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref30 ref33 ref32 ref1 ref39 ref38 ref70 ref24 ref68 ref23 ref67 ref26 Hsu (ref71) 2008; 101 ref25 ref20 ref64 ref63 ref22 Morrison (ref31) 1985 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref12 doi: 10.1186/s12984-019-0612-y – ident: ref7 doi: 10.4103/0972-2327.168631 – ident: ref4 doi: 10.1002/14651858.cd000197.pub4 – ident: ref13 doi: 10.1371/journal.pone.0214651 – ident: ref56 doi: 10.1016/j.procs.2014.08.048 – ident: ref32 doi: 10.1109/IEMBS.2010.5626446 – ident: ref67 doi: 10.1016/j.jbi.2018.07.014 – ident: ref51 doi: 10.1109/ICCECE48148.2020.9223073 – ident: ref20 doi: 10.1109/TNSRE.2019.2939202 – ident: ref42 doi: 10.1109/TBME.2011.2160723 – ident: ref29 doi: 10.1191/0269215505cr832oa – ident: ref28 doi: 10.5014/ajot.39.6.386 – ident: ref50 doi: 10.1186/1743-0003-9-21 – ident: ref35 doi: 10.3390/s16020202 – ident: ref22 doi: 10.1109/TNSRE.2017.2755667 – ident: ref52 doi: 10.1177/1545968307305353 – ident: ref59 doi: 10.3200/35-09-004-RC – ident: ref46 doi: 10.1007/s13244-018-0639-9 – ident: ref61 doi: 10.1080/03610929208830963 – ident: ref60 doi: 10.1016/S0167-9457(97)00010-9 – ident: ref30 doi: 10.1161/01.STR.0000143153.76460.7d – ident: ref23 doi: 10.1109/ICORR.2017.8009444 – ident: ref25 doi: 10.2340/1650197771331 – ident: ref33 doi: 10.1109/IEMBS.2011.6091444 – ident: ref45 doi: 10.1007/s10462-007-9052-3 – ident: ref43 doi: 10.3389/fbioe.2020.00664 – ident: ref11 doi: 10.2147/CIA.S32405 – ident: ref63 doi: 10.1002/asi.10242 – ident: ref8 doi: 10.1016/S2214-109X(13)70089-5 – ident: ref16 doi: 10.1109/TBME.2020.3027853 – ident: ref36 doi: 10.1109/TBME.2015.2477095 – ident: ref49 doi: 10.1007/978-1-4302-5990-9_3 – ident: ref21 doi: 10.1016/j.cmpb.2016.02.012 – ident: ref65 doi: 10.1038/s41598-019-56862-5 – ident: ref39 doi: 10.3390/s18010018 – ident: ref38 doi: 10.1109/TNSRE.2020.2966950 – ident: ref15 doi: 10.1186/1743-0003-11-144 – ident: ref37 doi: 10.1109/TBME.2019.2899927 – ident: ref6 doi: 10.5853/jos.2013.15.3.128 – ident: ref18 doi: 10.1519/JPT.0000000000000067 – ident: ref48 doi: 10.1186/1471-2105-9-319 – ident: ref26 doi: 10.1097/00004356-198112000-00001 – year: 1985 ident: ref31 article-title: Inertial measurement unit – ident: ref53 doi: 10.1109/JPROC.2009.2038727 – ident: ref55 doi: 10.1063/1.4822961 – volume: 101 start-page: 1396 issue: 1 year: 2008 ident: ref71 article-title: A practical guide to support vector classification publication-title: BJU Int. – ident: ref9 doi: 10.1016/S1474-4422(09)70025-0 – ident: ref68 doi: 10.1109/TNSRE.2017.2720727 – volume: 44 start-page: 329 issue: 3 year: 2008 ident: ref2 article-title: How to apply the international classification of functioning, disability and health (ICF) for rehabilitation management in clinical practice publication-title: Eur J. Phys. Rehabil. Med. – ident: ref58 doi: 10.1109/BSN.2006.57 – ident: ref62 doi: 10.3390/e20050377 – ident: ref14 doi: 10.1038/micronano.2016.43 – ident: ref19 doi: 10.1109/TBME.2012.2208750 – ident: ref44 doi: 10.1016/j.ecolmodel.2006.11.033 – ident: ref70 doi: 10.4135/9781446247501.n3784 – ident: ref27 doi: 10.1161/01.STR.24.1.58 – ident: ref3 doi: 10.1016/j.jht.2012.06.005 – ident: ref17 doi: 10.1371/journal.pone.0096414 – ident: ref5 doi: 10.3109/09638288.2016.1138550 – ident: ref24 doi: 10.1016/j.bbe.2016.09.005 – ident: ref40 doi: 10.1016/j.medengphy.2016.12.011 – ident: ref47 doi: 10.1109/TNNLS.2014.2336665 – volume: 7 start-page: 39 year: 1997 ident: ref66 article-title: Overcoming the myopia of inductive learning algorithms with RELIEFF publication-title: Appl. Intell. doi: 10.1023/A:1008280620621 – ident: ref57 doi: 10.1021/ac00234a011 – ident: ref1 doi: 10.5772/67577 – ident: ref34 doi: 10.1186/s12984-016-0182-1 – ident: ref64 doi: 10.1310/tsr2101-12 – volume: 18 start-page: 332 issue: 3 year: 2003 ident: ref69 article-title: SVM classification: Its contents and challenges publication-title: Appl. Math. doi: 10.1007/s11766-003-0059-5 – ident: ref10 doi: 10.3346/jkms.2015.30.S2.S139 – ident: ref54 doi: 10.3390/s19092186 – ident: ref41 doi: 10.1038/s41598-018-34671-6 |
| SSID | ssj0014846 |
| Score | 2.459801 |
| Snippet | Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 945 |
| SubjectTerms | Accelerometers Algorithms ARAT data glove Data gloves Feature extraction Force sensors Hand Strength Health Services Research Humans Instruments Medical services Motion detection Paresis Physicians poststroke rehabilitation Recovery of Function Rehabilitation ROC Sensors Stroke Stroke (medical condition) Stroke Rehabilitation - methods SVC Thumb Variance analysis |
| Title | Poststroke Grasp Ability Assessment Using an Intelligent Data Glove Based on Action Research Arm Test: Development, Algorithms, and Experiments |
| URI | https://ieeexplore.ieee.org/document/9531064 https://www.ncbi.nlm.nih.gov/pubmed/34495824 https://www.proquest.com/docview/2621796710 https://www.proquest.com/docview/2571055636 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PVTlwKPlESjISJzQZpvEduJwS2FLQVpOW6m3yLEdQG2TapM9tH-Cv8zYSayCAHGLZMex4288M54XwJsszqXEptBkpg5ZyjSeg1yFSptYcZEK7ZIkLb-kp2fs8zk_34KZj4UxxjjnMzO3j86Wr1u1sVdlRzkCBlnoNmxnIh1itbzFgIkhKCeKkYCTnI0WzDjKj1bHywVqgkmMCmpsU9DtwS5lqBmIhP3Cjlx9lb-Lmo7lnDyA5TTZwdPkYr7pq7m6_S2P4_-u5iHcH2VPUgxgeQRbptmHe3cyEu7D7nK0tR_AD1vHt-vX7YUhH9eyuyaFc6S9IYXP5kmcxwGRDfnkU3v25IPsJXHOoeQYmaQmbUMKFz9BJkc_nMQVWeHi35E7bkszUlx-bdff-29X3QxH1WThCxB0j-HsZLF6fxqO5RtCRVneo2aq7P9O4porkWeouGhKjbCGSqO5ympDRVXFQuJBUEWpRkkDYRNxyRXjxnD6BHaatjHPgESVvfyiNcUThNWGSaEynmS11AhAFcUBRNMulmrMbW5LbFyWTseJ8tJioLQYKEcMBPDWv3I9JPb4V-cDu3--47h1ARxOUClH0u_KJEUtL09RcgvgtW9GorWWGNmYdoN9eOYKk9I0gKcDxPzYEzKf__mbL2AvsREYznH8EHb69ca8RLmor145gvgJYY4Gyg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIpVyKNAWCC1gJE5os40TO4_eUtiyhaanrdRb5NgOoLZJtcke4E_wlxk7D7UIELdIdhw7_sYz43kBvI1oIgQ2uTrSpctCpvAc5NKVSlPJ4zBWNklSdhbOz9mnC36xBpMxFkZrbZ3P9NQ8Wlu-quXKXJUdJAgYZKH34D5njPEuWmu0GbC4C8vxKJKwn7Dehkm95GBxlM1QF_QpqqjUJKHbhI2AoW4Q--wOQ7IVVv4ubFqmc_wIsmG6na_J5XTVFlP547dMjv-7nsew1UufJO3g8gTWdLUND2_lJNyGjay3tu_AT1PJt2mX9aUmH5eiuSGpdaX9TtIxnyexPgdEVORkTO7Zkg-iFcS6h5IjZJOK1BVJbQQFGVz9cBLXZIGLPyS3HJcmJL36Ui-_tV-vmwmOqshsLEHQ7ML58Wzxfu72BRxcGbCkRd1Umv_t05LLOIlQdVFBoGNjqtSKy6jUQVwUNBZ4FBReqFDWQOB4XHDJuNY8eArrVV3p50C8wlx_BWWAZwgrNROxjLgflUIhBKVHHfCGXcxln93cFNm4yq2W4yW5wUBuMJD3GHDg3fjKTZfa41-dd8z-jR37rXNgf4BK3hN_k_sh6nlJiLKbA2_GZiRbY4sRla5X2IdHtjRpEDrwrIPYOPaAzBd__uZreDBfZKf56cnZ5z3Y9E08hnUj34f1drnSL1FKaotXljh-AUXUChc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Poststroke+Grasp+Ability+Assessment+Using+an+Intelligent+Data+Glove+Based+on+Action+Research+Arm+Test%3A+Development%2C+Algorithms%2C+and+Experiments&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Dutta%2C+Debeshi&rft.au=Aruchamy%2C+Srinivasan&rft.au=Mandal%2C+Soumen&rft.au=Sen%2C+Soumen&rft.date=2022-02-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=69&rft.issue=2&rft.spage=945&rft.epage=954&rft_id=info:doi/10.1109%2FTBME.2021.3110432&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2021_3110432 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |