Poststroke Grasp Ability Assessment Using an Intelligent Data Glove Based on Action Research Arm Test: Development, Algorithms, and Experiments

Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 69; no. 2; pp. 945 - 954
Main Authors Dutta, Debeshi, Aruchamy, Srinivasan, Mandal, Soumen, Sen, Soumen
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2021.3110432

Cover

More Information
Summary:Growing impact of poststroke upper extremity (UE) functional limitations entails newer dimensions in assessment methodologies. This has compelled researchers to think way beyond traditional stroke assessment scales during the out-patient rehabilitation phase. In concurrence with this, sensor-driven quantitative evaluation of poststroke UE functional limitations has become a fertile field of research. Here, we have emphasized an instrumented wearable for systematic monitoring of stroke patients with right-hemiparesis for evaluating their grasp abilities deploying intelligent algorithms. An instrumented glove housing 6 flex sensors, 3 force sensors, and a motion processing unit was developed to administer 19 activities of Action Research Arm Test (ARAT) while experimenting on 20 voluntarily participating subjects. After necessary signal conditioning, meaningful features were extracted, and subsequently the most appropriate ones were selected using the ReliefF algorithm. An optimally tuned support vector classifier was employed to classify patients with different degrees of disability and an accuracy of 92% was achieved supported by a high area under the receiver operating characteristic score. Furthermore, selected features could provide additional information that revealed the causes of grasp limitations. This would assist physicians in planning more effective poststroke rehabilitation strategies. Results of the one-way ANOVA test conducted on actual and predicted ARAT scores of the subjects indicated remarkable prospects of the proposed glove-based method in poststroke grasp ability assessment and rehabilitation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2021.3110432