Automatic Subretinal Fluid Segmentation of Retinal SD-OCT Images With Neurosensory Retinal Detachment Guided by Enface Fundus Imaging
Objective: Accurate segmentation of neurosensory retinal detachment (NRD) associated subretinal fluid in spectral domain optical coherence tomography (SD-OCT) is vital for the assessment of central serous chorioretinopathy (CSC). A novel two-stage segmentation algorithm was proposed, guided by Enfac...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 65; no. 1; pp. 87 - 95 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2017.2695461 |
Cover
| Summary: | Objective: Accurate segmentation of neurosensory retinal detachment (NRD) associated subretinal fluid in spectral domain optical coherence tomography (SD-OCT) is vital for the assessment of central serous chorioretinopathy (CSC). A novel two-stage segmentation algorithm was proposed, guided by Enface fundus imaging. Methods: In the first stage, Enface fundus image was segmented using thickness map prior to detecting the fluid-associated abnormalities with diffuse boundaries. In the second stage, the locations of the abnormalities were used to restrict the spatial extent of the fluid region, and a fuzzy level set method with a spatial smoothness constraint was applied to subretinal fluid segmentation in the SD-OCT scans. Results: Experimental results from 31 retinal SD-OCT volumes with CSC demonstrate that our method can achieve a true positive volume fraction (TPVF), false positive volume fraction (FPVF), and positive predicative value (PPV) of 94.3%, 0.97%, and 93.6%, respectively, for NRD regions. Our approach can also discriminate NRD-associated subretinal fluid from subretinal pigment epithelium fluid associated with pigment epithelial detachment with a TPVF, FPVF, and PPV of 93.8%, 0.40%, and 90.5%, respectively. Conclusion: We report a fully automatic method for the segmentation of subretinal fluid. Significance: Our method shows the potential to improve clinical therapy for CSC. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0018-9294 1558-2531 1558-2531 |
| DOI: | 10.1109/TBME.2017.2695461 |