Temperature Effects on Information Capacity and Energy Efficiency of Hodgkin-Huxley Neuron

Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies o...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 10; pp. 166 - 169
Main Author 王龙飞 贾斐 刘效治 宋亚磊 俞连春
Format Journal Article
LanguageEnglish
Published 01.10.2015
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/32/10/108701

Cover

More Information
Summary:Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the tempera- ture corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.
Bibliography:Recent experimental and theoretical studies show that energy efficiency, which measures the amount of infor- mation processed by a neuron with per unit of energy consumption, plays an important role in the evolution of neural systems. Here we calculate the information rates and energy efficieneies of the Hodgkin-Huxley (HH) neuron model at different temperatures in a noisy environment. It is found that both the information rate and energy efficiency are maximized by certain temperatures. Though the information rate and energy efficiency cannot be maximized simultaneously, the neuron holds a high information processing capacity at the tempera- ture corresponding to the maximal energy efficiency. Our results support the idea that the energy efficiency is a selective pressure that influences the evolution of nervous systems.
11-1959/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/10/108701