Simultaneous two-color imaging with a dual-channel miniscope in freely behaving mice
Miniaturized fluorescence microscopes (miniscopes) enable imaging of calcium events from a large population of neurons in freely behaving animals. Traditionally, miniscopes have only been able to record from a single fluorescence wavelength. Here, we present an open-source dual-channel miniscope tha...
Saved in:
Published in | Science advances Vol. 11; no. 27; p. eadr6470 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for the Advancement of Science
04.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2375-2548 2375-2548 |
DOI | 10.1126/sciadv.adr6470 |
Cover
Summary: | Miniaturized fluorescence microscopes (miniscopes) enable imaging of calcium events from a large population of neurons in freely behaving animals. Traditionally, miniscopes have only been able to record from a single fluorescence wavelength. Here, we present an open-source dual-channel miniscope that simultaneously records two wavelengths in freely behaving animals. To enable simultaneous acquisition of two fluorescent wavelengths, we incorporated two CMOS sensors into a single miniscope. To validate our dual-channel miniscope, we imaged hippocampal CA1 region that co-expressed a dynamic calcium indicator (GCaMP) and a static nuclear signal (dTomato) while mice ran on a linear track. Our results suggest that, even when neurons were registered across days using dTomato signals, hippocampal spatial coding changes over time. In conclusion, our dual-channel miniscope enables imaging of two fluorescence wavelengths with minimal cross-talk between the two channels, opening the doors to a multitude of previously inaccessible experimental possibilities.
An open-source dual-channel miniscope that simultaneously records two wavelengths in freely behaving animals was presented. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ISSN: | 2375-2548 2375-2548 |
DOI: | 10.1126/sciadv.adr6470 |