Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material

The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by Bayer?. The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses. The polyure...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of polymer science Vol. 32; no. 12; pp. 1666 - 1677
Main Author Pawlikowski, Marek
Format Journal Article
LanguageEnglish
Published Heidelberg Chinese Chemical Society and Institute of Chemistry, CAS 01.12.2014
Subjects
Online AccessGet full text
ISSN0256-7679
1439-6203
DOI10.1007/s10118-014-1549-z

Cover

Abstract The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by Bayer?. The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses. The polyurethane was assumed to be non-linearly viscohyperelastic, isotropic and incompressible. The constitutive equation was derived from the postulated strain energy function. The elastic and rheological constants were identified on the basis of experimental tests, i.e. relaxation tests and monotonic uniaxial tests at two different strain rates, i.e. λ= 0.1 min-1 and λ= 1.0 min-1. The stiffness tensor was derived and introduced to Abaqus?finite element(FE) software in order to numerically validate the constitutive model. The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
AbstractList The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by Bayer(R). The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses. The polyurethane was assumed to be non-linearly viscohyperelastic, isotropic and incompressible. The constitutive equation was derived from the postulated strain energy function. The elastic and rheological constants were identified on the basis of experimental tests, i.e. relaxation tests and monotonic uniaxial tests at two different strain rates, i.e. [lambda] = 0.1 min super(-1) and [lambda] = 1.0 min super(-1). The stiffness tensor was derived and introduced to Abaqus(R) finite element (FE) software in order to numerically validate the constitutive model. The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by Bayer?. The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses. The polyurethane was assumed to be non-linearly viscohyperelastic, isotropic and incompressible. The constitutive equation was derived from the postulated strain energy function. The elastic and rheological constants were identified on the basis of experimental tests, i.e. relaxation tests and monotonic uniaxial tests at two different strain rates, i.e. λ= 0.1 min-1 and λ= 1.0 min-1. The stiffness tensor was derived and introduced to Abaqus?finite element(FE) software in order to numerically validate the constitutive model. The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by Bayer®. The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses. The polyurethane was assumed to be non-linearly viscohyperelastic, isotropic and incompressible. The constitutive equation was derived from the postulated strain energy function. The elastic and rheological constants were identified on the basis of experimental tests, i.e. relaxation tests and monotonic uniaxial tests at two different strain rates, i.e. min −1 and min −1 . The stiffness tensor was derived and introduced to Abaqus® finite element (FE) software in order to numerically validate the constitutive model. The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
Author Marek Pawlikowski
AuthorAffiliation Warsaw University of Technology, Institute of Mechanics and Printing
Author_xml – sequence: 1
  givenname: Marek
  surname: Pawlikowski
  fullname: Pawlikowski, Marek
  email: m.pawlikowski@wip.pw.edu.pl
  organization: Institute of Mechanics and Printing, Warsaw University of Technology
BookMark eNp9kMtOAyEUQImpia36Ae4mrtygXGYGOkvT-IxaF90ThkKLQbDAmNSvF1PjwkVXJOQcLvdM0MgHrxE6A3IJhPCrBARgigk0GNqmw18HaAxN3WFGST1CY0Jbhjnj3RGapPRGCGt4y8fo8SV47KzXMlaz4FO2ecj2U1fPYaldZUKs8lpXc2dXQcnYBy-zrl6D2w5R57X0hSw30Up3gg6NdEmf_p7HaHF7s5jd46f53cPs-gmruplmzJZMq76minZq2kO_pEwR1feUGeiMMVox3bSSU9Ib2oMitADQKjOlyxpIfYwuds9-xLAZdMri3SalnSt_CUMSwLuact42vKB8h6oYUoraCGWzzDb4HKV1Aoj4iSd28USJJ37iia9iwj_zI9p3Gbd7HbpzUmH9SkfxFoboS4q90vnvoHXwq03x_iYxRjsom3T1N8xjkQA
CitedBy_id crossref_primary_10_1016_j_mtcomm_2020_101081
crossref_primary_10_1142_S1758825116500629
crossref_primary_10_3390_polym10060668
crossref_primary_10_1080_00222348_2016_1207643
Cites_doi 10.1007/s10118-012-1138-y
10.1002/pol.1973.170110929
10.1007/s11043-013-9208-2
10.1016/S0045-7949(02)00428-5
10.1177/088532829500900402
10.1016/S0032-3861(00)00273-1
10.1016/j.colsurfa.2008.12.025
10.1016/j.mechmat.2010.07.007
10.1007/s10118-013-1358-9
10.1007/978-3-662-13183-1
10.1002/zamm.201100082
10.1016/j.crme.2012.05.003
10.1243/09544119JEIM559
10.1103/RevModPhys.33.239
10.1007/s10118-013-1315-7
10.1016/j.jmps.2013.06.005
10.1002/nme.1620020106
10.1002/pat.3133
10.1007/s00466-004-0593-y
10.2478/v10180-012-0003-4
10.1115/1.321146
10.1016/j.spinee.2004.09.006
10.1002/app.1989.070380306
10.1016/S0093-6413(01)00189-6
10.1016/0032-3861(95)99302-B
10.1007/BF00268042
10.1016/j.biomaterials.2008.06.021
10.1016/j.compscitech.2010.05.011
10.1016/j.spinee.2009.04.026
ContentType Journal Article
Copyright Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014
Copyright_xml – notice: Chinese Chemical Society, Institute of Chemistry, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2014
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1007/s10118-014-1549-z
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
EISSN 1439-6203
EndPage 1677
ExternalDocumentID 10_1007_s10118_014_1549_z
662912779
GroupedDBID -EM
06D
0R~
0VY
1N0
29B
2B.
2C.
2KG
2RA
2VQ
30V
4.4
406
408
40D
5GY
5VR
67Z
6J9
8TC
92E
92I
92L
92Q
93N
96X
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFDTA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BGNMA
CAG
CCEZO
CDRFL
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
ESBYG
EST
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
ML~
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RIG
RLLFE
RSV
RWJ
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TCJ
TGP
TSG
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
ZE2
ZMTXR
~WA
-SB
-S~
5XA
5XC
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
ACUHS
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEB
H13
Q--
ROL
SJYHP
U1G
U5L
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SR
8FD
JG9
ID FETCH-LOGICAL-c348t-6d6ecb32c29c8b1bd26c0cbb26f19fffec6e45a720bf2b1c0226c15cf82d3103
IEDL.DBID AGYKE
ISSN 0256-7679
IngestDate Fri Sep 05 13:54:01 EDT 2025
Wed Oct 01 02:54:55 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 21 02:32:50 EST 2025
Wed Feb 14 10:34:32 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Finite elements
Constitutive model
Stress relaxation
Viscoelastic material
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-6d6ecb32c29c8b1bd26c0cbb26f19fffec6e45a720bf2b1c0226c15cf82d3103
Notes The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by Bayer?. The constitutive modelling was performed with a view to applying the material as the inlay of intervertebral disc prostheses. The polyurethane was assumed to be non-linearly viscohyperelastic, isotropic and incompressible. The constitutive equation was derived from the postulated strain energy function. The elastic and rheological constants were identified on the basis of experimental tests, i.e. relaxation tests and monotonic uniaxial tests at two different strain rates, i.e. λ= 0.1 min-1 and λ= 1.0 min-1. The stiffness tensor was derived and introduced to Abaqus?finite element(FE) software in order to numerically validate the constitutive model. The results of the constants identification and numerical implementation show that the derived constitutive equation is fully adequate to model stress-strain behavior of the polyurethane material.
Constitutive model Viscoelastic material Stress relaxation Finite elements.
11-2015/O6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793277547
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1793277547
crossref_citationtrail_10_1007_s10118_014_1549_z
crossref_primary_10_1007_s10118_014_1549_z
springer_journals_10_1007_s10118_014_1549_z
chongqing_primary_662912779
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Chinese journal of polymer science
PublicationTitleAbbrev Chin J Polym Sci
PublicationTitleAlternate Chinese Journal of Polymer Science
PublicationYear 2014
Publisher Chinese Chemical Society and Institute of Chemistry, CAS
Publisher_xml – name: Chinese Chemical Society and Institute of Chemistry, CAS
References JemiołoSTelegaJJMech. Res. Comm.20012839710.1016/S0093-6413(01)00189-6
TruesdellCNollWThe Non-linear Field Theories199210.1007/978-3-662-13183-1
JaviliAdell IsolaFSteinmannPJ. Mech. Phys. Solids.20136123811:CAS:528:DC%2BC3sXhsVCls7zK10.1016/j.jmps.2013.06.005
SongNJiangXLiJPangYLiJTanHFuQChinese J. Polym. Sci.2013311014511:CAS:528:DC%2BC3sXhtVWlsr%2FM10.1007/s10118-013-1315-7
PawlikowskiMArch. Mech. Eng.2012LIX3110.2478/v10180-012-0003-4
LuoLWangXJiaYWangZPolym. Adv. Technol.20132476791:CAS:528:DC%2BC3sXnt1Sjur0%3D10.1002/pat.3133
ZhangJXiaoCWangJZhuangXChenXChinese J. Polym. Sci.2013311216971:CAS:528:DC%2BC3sXhslCmtr%2FM10.1007/s10118-013-1358-9
StokesKMcVenesRAndersonJJ. Biomater. Appl.199593211:CAS:528:DyaK2MXmt1Oju78%3D
CiambellaJPaoloneAVidoliSMech. Mat.20104293210.1016/j.mechmat.2010.07.007
PokharkarVSivaramSPolymer19953648511:CAS:528:DyaK2MXpvVOju7Y%3D10.1016/0032-3861(95)99302-B
ZhangJNWuMYYangJJWuQYJinZLColloids Surf. A: Physicochem. Eng. Asp.20093372001:CAS:528:DC%2BD1MXhs1Cis7Y%3D10.1016/j.colsurfa.2008.12.025
OgdenRSaccomandiGSguraIComput. Mech.20043448410.1007/s00466-004-0593-y
TaylorRLPisterKSGoudreauGLInt. J. Num. Methods. Eng.197024510.1002/nme.1620020106
DollSSchweizerhofKJ. Appl. Mech.2000671710.1115/1.321146
RokickiGKowalczykTPolymer20004190131:CAS:528:DC%2BD3cXmtF2htL0%3D10.1016/S0032-3861(00)00273-1
PawlikowskiMMech. Time Dependent Mat.20141811:CAS:528:DC%2BC2cXjvV2rsrw%3D10.1007/s11043-013-9208-2
SchnellHChemistry and physics of polycarbonates1964New YorkWiley
LongCShengMHeBWuYWangGGuZChinese J. Polym. Sci.20123033871:CAS:528:DC%2BC38Xis1Orsb0%3D10.1007/s10118-012-1138-y
AdhikariRGunatillakePAGriffithsITataiLWickramaratnaMHoushyarSMooreTMayadunneRTFieldJMcGeeMCarboneTBiomaterials20082937621:CAS:528:DC%2BD1cXpt1enu7w%3D10.1016/j.biomaterials.2008.06.021
MadeoAGeorgeDLekszyckiTNierenbergerMRémondYC.R. Mecanique20123405751:CAS:528:DC%2BC38Xot1ChsLc%3D10.1016/j.crme.2012.05.003
Büttner-JanzKSchellnackKZippelHInt. Orthop.19891317310.1007/BF00268042
LekszyckiTdell’IsolaFZAMM-J. Appl. Math. Mech.20129242610.1002/zamm.201100082
ColemanBDNollWRev. Mod. Phys.19613223910.1103/RevModPhys.33.239
HöckerHKeulHSalomoneJCCyclic carbonates (ring-opening polymerization)Polymeric materials encyclopedia1996Boca Raton, FLCRC Press
HarrisRFJ. Appl. Polym. Sci.1989384631:CAS:528:DyaL1MXmtleku7c%3D10.1002/app.1989.070380306
AndreausUCollocaMProc. Inst. Mech. Eng. H.200922355891:STN:280:DC%2BD1MrgtFOgsw%3D%3D10.1243/09544119JEIM559
GamradtSCWangJCSpine J.200559510.1016/j.spinee.2004.09.006
PawlikowskiMSkalskiKHaraburdaMComp. Struct.20038188710.1016/S0045-7949(02)00428-5
RyszkowskaJLAuguscikMSheikhABoccacciniAComp. Sci. Technol.20107018941:CAS:528:DC%2BC3cXht1ajtLvM10.1016/j.compscitech.2010.05.011
KobayashiMInoueSTsurutaTJ. Polym. Sci. Polym. Chem. Ed.19731123831:CAS:528:DyaE3sXlsVKru7c%3D10.1002/pol.1973.170110929
ButtermannGRBeaubienBPSpine J.2009974410.1016/j.spinee.2009.04.026
M Kobayashi (1549_CR9) 1973; 11
L Luo (1549_CR20) 2013; 24
T Lekszycki (1549_CR29) 2012; 92
J Zhang (1549_CR4) 2013; 31
V Pokharkar (1549_CR11) 1995; 36
J Ciambella (1549_CR23) 2010; 42
K Büttner-Janz (1549_CR14) 1989; 13
M Pawlikowski (1549_CR27) 2003; 81
H Höcker (1549_CR10) 1996
M Pawlikowski (1549_CR18) 2012; LIX
S Doll (1549_CR25) 2000; 67
U Andreaus (1549_CR28) 2009; 223
GR Buttermann (1549_CR15) 2009; 9
JL Ryszkowska (1549_CR1) 2010; 70
M Pawlikowski (1549_CR24) 2014; 18
RL Taylor (1549_CR22) 1970; 2
A Javili (1549_CR31) 2013; 61
S Jemioło (1549_CR21) 2001; 28
SC Gamradt (1549_CR16) 2005; 5
G Rokicki (1549_CR13) 2000; 41
N Song (1549_CR2) 2013; 31
RF Harris (1549_CR12) 1989; 38
H Schnell (1549_CR8) 1964
K Stokes (1549_CR7) 1995; 9
R Adhikari (1549_CR3) 2008; 29
C Long (1549_CR6) 2012; 30
JN Zhang (1549_CR5) 2009; 337
BD Coleman (1549_CR19) 1961; 3
A Madeo (1549_CR30) 2012; 340
C Truesdell (1549_CR17) 1992
R Ogden (1549_CR26) 2004; 34
References_xml – reference: HarrisRFJ. Appl. Polym. Sci.1989384631:CAS:528:DyaL1MXmtleku7c%3D10.1002/app.1989.070380306
– reference: LekszyckiTdell’IsolaFZAMM-J. Appl. Math. Mech.20129242610.1002/zamm.201100082
– reference: JaviliAdell IsolaFSteinmannPJ. Mech. Phys. Solids.20136123811:CAS:528:DC%2BC3sXhsVCls7zK10.1016/j.jmps.2013.06.005
– reference: RyszkowskaJLAuguscikMSheikhABoccacciniAComp. Sci. Technol.20107018941:CAS:528:DC%2BC3cXht1ajtLvM10.1016/j.compscitech.2010.05.011
– reference: GamradtSCWangJCSpine J.200559510.1016/j.spinee.2004.09.006
– reference: AndreausUCollocaMProc. Inst. Mech. Eng. H.200922355891:STN:280:DC%2BD1MrgtFOgsw%3D%3D10.1243/09544119JEIM559
– reference: ZhangJXiaoCWangJZhuangXChenXChinese J. Polym. Sci.2013311216971:CAS:528:DC%2BC3sXhslCmtr%2FM10.1007/s10118-013-1358-9
– reference: PawlikowskiMMech. Time Dependent Mat.20141811:CAS:528:DC%2BC2cXjvV2rsrw%3D10.1007/s11043-013-9208-2
– reference: StokesKMcVenesRAndersonJJ. Biomater. Appl.199593211:CAS:528:DyaK2MXmt1Oju78%3D
– reference: OgdenRSaccomandiGSguraIComput. Mech.20043448410.1007/s00466-004-0593-y
– reference: ZhangJNWuMYYangJJWuQYJinZLColloids Surf. A: Physicochem. Eng. Asp.20093372001:CAS:528:DC%2BD1MXhs1Cis7Y%3D10.1016/j.colsurfa.2008.12.025
– reference: DollSSchweizerhofKJ. Appl. Mech.2000671710.1115/1.321146
– reference: SongNJiangXLiJPangYLiJTanHFuQChinese J. Polym. Sci.2013311014511:CAS:528:DC%2BC3sXhtVWlsr%2FM10.1007/s10118-013-1315-7
– reference: HöckerHKeulHSalomoneJCCyclic carbonates (ring-opening polymerization)Polymeric materials encyclopedia1996Boca Raton, FLCRC Press
– reference: LongCShengMHeBWuYWangGGuZChinese J. Polym. Sci.20123033871:CAS:528:DC%2BC38Xis1Orsb0%3D10.1007/s10118-012-1138-y
– reference: CiambellaJPaoloneAVidoliSMech. Mat.20104293210.1016/j.mechmat.2010.07.007
– reference: SchnellHChemistry and physics of polycarbonates1964New YorkWiley
– reference: PokharkarVSivaramSPolymer19953648511:CAS:528:DyaK2MXpvVOju7Y%3D10.1016/0032-3861(95)99302-B
– reference: LuoLWangXJiaYWangZPolym. Adv. Technol.20132476791:CAS:528:DC%2BC3sXnt1Sjur0%3D10.1002/pat.3133
– reference: MadeoAGeorgeDLekszyckiTNierenbergerMRémondYC.R. Mecanique20123405751:CAS:528:DC%2BC38Xot1ChsLc%3D10.1016/j.crme.2012.05.003
– reference: TaylorRLPisterKSGoudreauGLInt. J. Num. Methods. Eng.197024510.1002/nme.1620020106
– reference: AdhikariRGunatillakePAGriffithsITataiLWickramaratnaMHoushyarSMooreTMayadunneRTFieldJMcGeeMCarboneTBiomaterials20082937621:CAS:528:DC%2BD1cXpt1enu7w%3D10.1016/j.biomaterials.2008.06.021
– reference: ButtermannGRBeaubienBPSpine J.2009974410.1016/j.spinee.2009.04.026
– reference: JemiołoSTelegaJJMech. Res. Comm.20012839710.1016/S0093-6413(01)00189-6
– reference: PawlikowskiMArch. Mech. Eng.2012LIX3110.2478/v10180-012-0003-4
– reference: TruesdellCNollWThe Non-linear Field Theories199210.1007/978-3-662-13183-1
– reference: KobayashiMInoueSTsurutaTJ. Polym. Sci. Polym. Chem. Ed.19731123831:CAS:528:DyaE3sXlsVKru7c%3D10.1002/pol.1973.170110929
– reference: PawlikowskiMSkalskiKHaraburdaMComp. Struct.20038188710.1016/S0045-7949(02)00428-5
– reference: ColemanBDNollWRev. Mod. Phys.19613223910.1103/RevModPhys.33.239
– reference: Büttner-JanzKSchellnackKZippelHInt. Orthop.19891317310.1007/BF00268042
– reference: RokickiGKowalczykTPolymer20004190131:CAS:528:DC%2BD3cXmtF2htL0%3D10.1016/S0032-3861(00)00273-1
– volume: 30
  start-page: 387
  issue: 3
  year: 2012
  ident: 1549_CR6
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-012-1138-y
– volume: 11
  start-page: 2383
  year: 1973
  ident: 1549_CR9
  publication-title: J. Polym. Sci. Polym. Chem. Ed.
  doi: 10.1002/pol.1973.170110929
– volume: 18
  start-page: 1
  year: 2014
  ident: 1549_CR24
  publication-title: Mech. Time Dependent Mat.
  doi: 10.1007/s11043-013-9208-2
– volume: 81
  start-page: 887
  year: 2003
  ident: 1549_CR27
  publication-title: Comp. Struct.
  doi: 10.1016/S0045-7949(02)00428-5
– volume: 9
  start-page: 321
  year: 1995
  ident: 1549_CR7
  publication-title: J. Biomater. Appl.
  doi: 10.1177/088532829500900402
– volume: 41
  start-page: 9013
  year: 2000
  ident: 1549_CR13
  publication-title: Polymer
  doi: 10.1016/S0032-3861(00)00273-1
– volume: 337
  start-page: 200
  year: 2009
  ident: 1549_CR5
  publication-title: Colloids Surf. A: Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2008.12.025
– volume: 42
  start-page: 932
  year: 2010
  ident: 1549_CR23
  publication-title: Mech. Mat.
  doi: 10.1016/j.mechmat.2010.07.007
– volume: 31
  start-page: 1697
  issue: 12
  year: 2013
  ident: 1549_CR4
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-013-1358-9
– volume-title: The Non-linear Field Theories
  year: 1992
  ident: 1549_CR17
  doi: 10.1007/978-3-662-13183-1
– volume: 92
  start-page: 426
  year: 2012
  ident: 1549_CR29
  publication-title: ZAMM-J. Appl. Math. Mech.
  doi: 10.1002/zamm.201100082
– volume: 340
  start-page: 575
  year: 2012
  ident: 1549_CR30
  publication-title: C.R. Mecanique
  doi: 10.1016/j.crme.2012.05.003
– volume: 223
  start-page: 589
  issue: 5
  year: 2009
  ident: 1549_CR28
  publication-title: Proc. Inst. Mech. Eng. H.
  doi: 10.1243/09544119JEIM559
– volume: 3
  start-page: 239
  issue: 2
  year: 1961
  ident: 1549_CR19
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.33.239
– volume: 31
  start-page: 1451
  issue: 10
  year: 2013
  ident: 1549_CR2
  publication-title: Chinese J. Polym. Sci.
  doi: 10.1007/s10118-013-1315-7
– volume: 61
  start-page: 2381
  year: 2013
  ident: 1549_CR31
  publication-title: J. Mech. Phys. Solids.
  doi: 10.1016/j.jmps.2013.06.005
– volume: 2
  start-page: 45
  year: 1970
  ident: 1549_CR22
  publication-title: Int. J. Num. Methods. Eng.
  doi: 10.1002/nme.1620020106
– volume: 24
  start-page: 679
  issue: 7
  year: 2013
  ident: 1549_CR20
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.3133
– volume: 34
  start-page: 484
  year: 2004
  ident: 1549_CR26
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-004-0593-y
– volume-title: Chemistry and physics of polycarbonates
  year: 1964
  ident: 1549_CR8
– volume: LIX
  start-page: 31
  year: 2012
  ident: 1549_CR18
  publication-title: Arch. Mech. Eng.
  doi: 10.2478/v10180-012-0003-4
– volume: 67
  start-page: 17
  year: 2000
  ident: 1549_CR25
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.321146
– volume: 5
  start-page: 95
  year: 2005
  ident: 1549_CR16
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2004.09.006
– volume: 38
  start-page: 463
  year: 1989
  ident: 1549_CR12
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1989.070380306
– volume: 28
  start-page: 397
  year: 2001
  ident: 1549_CR21
  publication-title: Mech. Res. Comm.
  doi: 10.1016/S0093-6413(01)00189-6
– volume: 36
  start-page: 4851
  year: 1995
  ident: 1549_CR11
  publication-title: Polymer
  doi: 10.1016/0032-3861(95)99302-B
– volume: 13
  start-page: 173
  year: 1989
  ident: 1549_CR14
  publication-title: Int. Orthop.
  doi: 10.1007/BF00268042
– volume: 29
  start-page: 3762
  year: 2008
  ident: 1549_CR3
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.06.021
– volume: 70
  start-page: 1894
  year: 2010
  ident: 1549_CR1
  publication-title: Comp. Sci. Technol.
  doi: 10.1016/j.compscitech.2010.05.011
– volume-title: Polymeric materials encyclopedia
  year: 1996
  ident: 1549_CR10
– volume: 9
  start-page: 744
  year: 2009
  ident: 1549_CR15
  publication-title: Spine J.
  doi: 10.1016/j.spinee.2009.04.026
SSID ssj0064757
Score 1.9900447
Snippet The polyurethane, which was the subject of the constitutive research presented in the paper, was based on oligocarbonate diols Desmophen C2100 produced by...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1666
SubjectTerms Abaqus
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Constants
Constitutive equations
Constitutive relationships
Finite element method
Industrial Chemistry/Chemical Engineering
Mathematical analysis
Mathematical models
Nonlinearity
Polymer Sciences
Polyurethane resins
实验测试
应力应变行为
本构方程
本构模型
聚氨酯材料
聚碳酸酯二醇
非线性
Title Non-linear Constitutive Model for the Oligocarbonate Polyurethane Material
URI http://lib.cqvip.com/qk/86788X/201412/662912779.html
https://link.springer.com/article/10.1007/s10118-014-1549-z
https://www.proquest.com/docview/1793277547
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1439-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064757
  issn: 0256-7679
  databaseCode: AFBBN
  dateStart: 20100101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1439-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064757
  issn: 0256-7679
  databaseCode: AGYKE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1439-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064757
  issn: 0256-7679
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgHODCGzEeU5E4gYLWtE3a40AMBGKnIcEpatIEEFM7tu7Afj1O1_ASIHHrIXVb23W-xM5ngMOMGT-QWUICE0QkTIM2iaXCK0UzJRMTBdJu6N_02OVteHUX3dXnuMeu2t2lJKtI_emwG4JhXPqGxNKKkek8LER2fdKAhc7F_fW5C8As5DOCT5zNCWc8ccnMn4RYSoXHIn94wQd-nZo-8Oa3FGk183RXoO_eeVZw8nwyKeWJmn6jc_znR63Cco1Evc7MddZgTufrsHjmGsBtwFWvyIlFoenIU0VdVIDB0au653iIdj1Ej14xeHrACXEk7T689obF4HUy0nZHHkemZeXhm9DvnvfPLkndeoGoIIxLwjKmlQyooomKpS8zylRbSUnRtImxlSZMh1HKaVsaKn2FSIApP1ImppntXLYFjbzI9TZ4OpZRGnCuMxOFqUZRiHhSFBHr2DBpmrD7bgAxnDFsCMZo4lPOkya0nUmEqknLbe-MgfigW7YaFKhBYTUopk04er_Fyftj8IGzs0Dt2mQJaqeYjIUNXNTSA_ImHDvbifoHH_8ucedfo3dhiVbGt_Uxe9AoRxO9jyinlC306u7paa9Ve3cL5m9p5w1Vkfin
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5QAXaCmILX2kEqcio43j2M4RIeiWx54WCU5W7NgLYpXAbvbQ_fWMszFQBJW45eBMkpnJzBfP5BuA3YK7ONFFRhKXpITlSY9IbfDI0MLozKWJ9hv65wPev2Anl-ll-x_3NHS7h5JkE6mf_eyGYBg_fRnxtGJkvgTLLJaSdWD54PfV6VEIwJyJBcEnZnMiuMhCMfM1IZ5S4boqR_d4wX9T0xPefFEibTLP8ToMwz0vGk5u92e13jfzF3SO73yoj7DWItHoYOE6n-CDLTdg5TAMgPsMJ4OqJB6F5pPIVG1TAQbHqJmeEyHajRA9RtX4ZoQJcaL9PryN7qrx39nE-h15XJnXjYdvwvD4aHjYJ-3oBWISJmvCC26NTqihmZE61gXlpme0pmjazPlOE25Zmgva047q2CAS4CZOjZO08JPLtqBTVqXdhshKneaJELZwKcstikLEk6MIaaXj2nVh59EA6m7BsKE4p1lMhci60AsmUaYlLfezM8bqiW7Za1ChBpXXoJp34dfjKUHefxb_DHZWqF1fLEHtVLOp8oGLenpA0YW9YDvVvuDTtyV-edfqH7DSH56fqbM_g9MdWKWNI_hema_QqScz-w0RT62_tx7-AI2b-TM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RT9swED4NJgEv0xggCmMEaU8gi8ZJ7OQRwSpWoNoDlfpmxY4NSFVS2vRh_PrdpTEdiCHtLQ_ORfrO8X32nb8D-F4IF0a6yFjkooTFedRlqTb4ZHhhdOaSSNOB_s1AXA7j_igZtX1OZ77a3ackF3caSKWprE8nhTv96-IbEmPcBseMJMbY0wp8jDFU0-5ryM_8UixiuZD6xLjOpJCZT2u-ZYLEFe6r8u4RP_0ySC2Z56tkaRODep_hU0seg7OFtzfhgy2_wPq579m2Bf1BVTIijvk0MFVbB4DrWdA0vAmQoAZI-IJq_HCHMWyq6ejcBpNq_Hs-tXSIjiPzupmU23Db-3F7fsnabgnMRHFaM1EIa3TEDc9MqkNdcGG6RmuO3sgcFYcIGye55F3tuA4NBm9hwsS4lBfUbGwHVsuqtLsQ2FQneSSlLVwS5xZNIUnJ0URqUye068D-M1JqshDFUELwLORSZh3oeuyUaXXGqd3FWC0Vkgl6hdArgl49deD4-RVv753BR94hCtGl_AaiU81nitYaTop-sgMn3lOq_Sdn_7a491-jD2Ht10VPXf8cXO3DBm8mEFW3fIXVejq3B8hRav2tmYd_AONG4Gs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-linear+Constitutive+Model+for+the+Oligocarbonate+Polyurethane+Material&rft.jtitle=%E9%AB%98%E5%88%86%E5%AD%90%E7%A7%91%E5%AD%A6%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Marek+Pawlikowski&rft.date=2014-12-01&rft.issn=0256-7679&rft.eissn=1439-6203&rft.issue=12&rft.spage=1666&rft.epage=1677&rft_id=info:doi/10.1007%2Fs10118-014-1549-z&rft.externalDocID=662912779
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86788X%2F86788X.jpg