An evaluation of calculation parameters in the EGSnrc BEAMnrc Monte Carlo codes and their effect on surface dose calculation
The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc BEAM...
Saved in:
| Published in | Physics in medicine & biology Vol. 57; no. 14; pp. N267 - N278 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
21.07.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-9155 1361-6560 1361-6560 |
| DOI | 10.1088/0031-9155/57/14/N267 |
Cover
| Summary: | The Monte Carlo (MC) method has proven invaluable for radiation transport simulations to accurately determine radiation doses and is widely considered a reliable computational measure that can substitute a physical experiment where direct measurements are not possible or feasible. In the EGSnrc BEAMnrc MC codes, there are several user-specified parameters and customized transport algorithms, which may affect the calculation results. In order to fully utilize the MC methods available in these codes, it is essential to understand all these options and to use them appropriately. In this study, the effects of the electron transport algorithms in EGSnrc BEAMnrc, which are often a trade-off between calculation accuracy and efficiency, were investigated in the buildup region of a homogeneous water phantom and also in a heterogeneous phantom using the DOSRZnrc user code. The algorithms and parameters investigated include: boundary crossing algorithm (BCA), skin depth, electron step algorithm (ESA), global electron cutoff energy (ECUT) and electron production cutoff energy (AE). The variations in calculated buildup doses were found to be larger than 10% for different user-specified transport parameters. We found that using BCA = EXACT gave the best results in terms of accuracy and efficiency in calculating buildup doses using DOSRZnrc. In addition, using the ESA = PRESTA-I option was found to be the best way of reducing the total calculation time without losing accuracy in the results at high energies (few keV ∼ MeV). We also found that although choosing a higher ECUT AE value in the beam modelling can dramatically improve computation efficiency, there is a significant trade-off in surface dose uncertainty. Our study demonstrates that a careful choice of user-specified transport parameters is required when conducting similar MC calculations. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0031-9155 1361-6560 1361-6560 |
| DOI: | 10.1088/0031-9155/57/14/N267 |