Coupling proteomics and lipidomics for insights into regulation of oat (Avena sativa) grain lipid synthesis
Breeding is a feasible strategy to develop low-oil oat (Avena sativa) varieties, which aligns with specific processing needs and dietary preferences. To identify factors contributing to a low-oil phenotype, we optimised a sequential extraction workflow for proteomics and lipidomics analyses on five...
Saved in:
Published in | Food chemistry Vol. 478; p. 143644 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
30.06.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0308-8146 1873-7072 1873-7072 |
DOI | 10.1016/j.foodchem.2025.143644 |
Cover
Summary: | Breeding is a feasible strategy to develop low-oil oat (Avena sativa) varieties, which aligns with specific processing needs and dietary preferences. To identify factors contributing to a low-oil phenotype, we optimised a sequential extraction workflow for proteomics and lipidomics analyses on five Australian oat varieties with different oil contents. Oat oil content positively correlated with abundances of several proteins in lipid synthesis pathways, suggesting their key lipid regulatory roles. Lipidomics was used to complement proteomics data and revealed a negative correlation between triacylglycerols and other lipid classes such as diacylglycerols and phospholipids. Spatial regulation of lipids was also investigated using matrix-assisted laser desorption and ionisation mass spectrometry imaging (MALDI-MSI) and proteomics analysis of tissue-enriched fractions, providing further insights into distinct physiological functions of the endosperm and embryo. Pathway enrichment analysis indicated different nutrient-synthesising capacity in high- vs low-oil varieties. Findings from this study may support future breeding for low-oil oats.
•Proteomics and lipidomics investigations of lipid regulation in five oat varieties.•Proteomics revealed potential breeding targets to modulate oil content.•Lipidomics provided alternative insights into lipid synthesis in oats.•Lipid distribution was highly conserved across oat varieties.•Findings may support further explorations into oat oil synthesis and regulation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0308-8146 1873-7072 1873-7072 |
DOI: | 10.1016/j.foodchem.2025.143644 |