MHA-CoroCapsule: Multi-Head Attention Routing-Based Capsule Network for COVID-19 Chest X-Ray Image Classification

The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 5; pp. 1208 - 1218
Main Authors Li, Fudong, Lu, Xingyu, Yuan, Jianjun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2021.3134270

Cover

Abstract The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning can detect COVID-19 cases for chest X-ray images automatically, and also improve the accuracy and efficiency of doctors' diagnosis. However, large scale annotation of chest X-ray images is difficult because of limited resources and heavy burden on the medical system. To meet the challenge, we propose a capsule network model with multi-head attention routing algorithm, called MHA-CoroCapsule, to provide fast and accurate diagnostics for COVID-19 diseases from chest X-ray images. The MHA-CoroCapsule consists of convolutional layers, two capsule layers, and a non-iterative, parameterized multi-head attention routing algorithm is used to quantify the relationship between the two capsule layers. The experiments are performed on a combined dataset constituted by two publicly available datasets including normal, non-COVID pneumonia and COVID-19 images. The model achieves the accuracy of 97.28%, recall of 97.36%, and precision of 97.38% even with a limited number of samples. The experimental results demonstrate that, contrary to the transfer learning and deep feature extraction approaches, the proposed MHA-CoroCapsule has an encouraging performance with fewer trainable parameters and does not require pretraining and plenty of training samples.
AbstractList The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning can detect COVID-19 cases for chest X-ray images automatically, and also improve the accuracy and efficiency of doctors' diagnosis. However, large scale annotation of chest X-ray images is difficult because of limited resources and heavy burden on the medical system. To meet the challenge, we propose a capsule network model with multi-head attention routing algorithm, called MHA-CoroCapsule, to provide fast and accurate diagnostics for COVID-19 diseases from chest X-ray images. The MHA-CoroCapsule consists of convolutional layers, two capsule layers, and a non-iterative, parameterized multi-head attention routing algorithm is used to quantify the relationship between the two capsule layers. The experiments are performed on a combined dataset constituted by two publicly available datasets including normal, non-COVID pneumonia and COVID-19 images. The model achieves the accuracy of 97.28%, recall of 97.36%, and precision of 97.38% even with a limited number of samples. The experimental results demonstrate that, contrary to the transfer learning and deep feature extraction approaches, the proposed MHA-CoroCapsule has an encouraging performance with fewer trainable parameters and does not require pretraining and plenty of training samples.
The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning can detect COVID-19 cases for chest X-ray images automatically, and also improve the accuracy and efficiency of doctors' diagnosis. However, large scale annotation of chest X-ray images is difficult because of limited resources and heavy burden on the medical system. To meet the challenge, we propose a capsule network model with multi-head attention routing algorithm, called MHA-CoroCapsule, to provide fast and accurate diagnostics for COVID-19 diseases from chest X-ray images. The MHA-CoroCapsule consists of convolutional layers, two capsule layers, and a non-iterative, parameterized multi-head attention routing algorithm is used to quantify the relationship between the two capsule layers. The experiments are performed on a combined dataset constituted by two publicly available datasets including normal, non-COVID pneumonia and COVID-19 images. The model achieves the accuracy of 97.28%, recall of 97.36%, and precision of 97.38% even with a limited number of samples. The experimental results demonstrate that, contrary to the transfer learning and deep feature extraction approaches, the proposed MHA-CoroCapsule has an encouraging performance with fewer trainable parameters and does not require pretraining and plenty of training samples.The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning can detect COVID-19 cases for chest X-ray images automatically, and also improve the accuracy and efficiency of doctors' diagnosis. However, large scale annotation of chest X-ray images is difficult because of limited resources and heavy burden on the medical system. To meet the challenge, we propose a capsule network model with multi-head attention routing algorithm, called MHA-CoroCapsule, to provide fast and accurate diagnostics for COVID-19 diseases from chest X-ray images. The MHA-CoroCapsule consists of convolutional layers, two capsule layers, and a non-iterative, parameterized multi-head attention routing algorithm is used to quantify the relationship between the two capsule layers. The experiments are performed on a combined dataset constituted by two publicly available datasets including normal, non-COVID pneumonia and COVID-19 images. The model achieves the accuracy of 97.28%, recall of 97.36%, and precision of 97.38% even with a limited number of samples. The experimental results demonstrate that, contrary to the transfer learning and deep feature extraction approaches, the proposed MHA-CoroCapsule has an encouraging performance with fewer trainable parameters and does not require pretraining and plenty of training samples.
Author Li, Fudong
Lu, Xingyu
Yuan, Jianjun
Author_xml – sequence: 1
  givenname: Fudong
  orcidid: 0000-0003-4736-3119
  surname: Li
  fullname: Li, Fudong
  email: li_fud@163.com
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
– sequence: 2
  givenname: Xingyu
  orcidid: 0000-0001-5981-0516
  surname: Lu
  fullname: Lu, Xingyu
  email: xingyulu599@sina.com
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
– sequence: 3
  givenname: Jianjun
  orcidid: 0000-0003-1400-8866
  surname: Yuan
  fullname: Yuan, Jianjun
  email: jianjuny@sina.com
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34882550$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1rVDEUxYNU7LS6FwQJuHGTMZ_vw934rM5Ax0Kp0l2ILzc19c3LNMmj9L8340xddOHqcuB3Dvfec4KOxjACQq8ZnTNG2w9X69WcU87mggnJa_oMzZhSDeFKXh-hGeV1Qyit-DE6SemWUiYVbV-gYyGbhitFZ-huvVyQLsTQmW2aBviI19OQPVmCsXiRM4zZhxFfhin78YZ8MgksPrD4G-T7EH9jFyLuLn6sPhPW4u4XpIyvyaV5wKuNuQHcDSYl73xvdlkv0XNnhgSvDvMUff9ydtUtyfnF11W3OCe9kHUm0NbSQsPAMCmdk-CsYCBtJV1TtKWqqTi1oq_anoOojeSSsiKcbWtmpThF7_e52xjuprKT3vjUwzCYEcKUNK9oo4QQrC7ouyfobZjiWLYrlGqFVKIWhXp7oKafG7B6G_3GxAf9-MwCVHugjyGlCE73Pv-9OUfjB82o3rWmS2t615o-tFaM9InxMfs_ljd7iweAf3hbSaWqWvwBuUGfaw
CODEN ITMID4
CitedBy_id crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1016_j_compbiomed_2023_106567
crossref_primary_10_1038_s41598_024_80826_z
crossref_primary_10_1007_s10278_023_00791_3
crossref_primary_10_2196_46340
crossref_primary_10_1007_s10489_024_05819_x
crossref_primary_10_1109_ACCESS_2022_3193700
crossref_primary_10_1111_exsy_13423
crossref_primary_10_1186_s12938_024_01209_z
crossref_primary_10_1109_TMI_2024_3461231
crossref_primary_10_1109_TAES_2023_3313993
crossref_primary_10_1002_ima_23108
Cites_doi 10.1109/ICCVW.2019.00247
10.1038/s41598-020-76550-z
10.1007/978-3-030-00934-2_82
10.1056/nejmoa2001017
10.1109/CVPR.2017.195
10.3389/frai.2021.598932
10.1109/ACCESS.2020.3010287
10.1148/radiol.2020203511
10.1007/s13246-020-00865-4
10.1109/CVPR.2016.90
10.1109/CVPRW.2017.156
10.1016/j.compbiomed.2020.103792
10.1109/ICIP.2018.8451379
10.21037/atm.2020.03.132
10.1609/aaai.v31i1.11231
10.1148/radiol.2020200343
10.1109/TMI.2020.2993291
10.1148/radiol.2020200642
10.1007/s10489-020-02055-x
10.1016/j.eng.2020.04.010
10.1109/ROBIO49542.2019.8961610
10.1016/j.patrec.2020.09.010
10.1038/s41591-020-0931-3
10.1148/radiol.2020200463
10.1016/j.chaos.2020.110122
10.1016/j.cmpb.2020.105581
10.1109/CVPR.2017.690
10.48550/ARXIV.1704.04861
10.1148/radiol.2020202944
10.1007/s10489-020-01978-9
10.1016/j.compbiomed.2021.104399
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2021.3134270
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 1218
ExternalDocumentID 34882550
10_1109_TMI_2021_3134270
9645567
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: XDJK2020B033
  funderid: 10.13039/501100012226
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c347t-e974de81ea144ff4efd31e4d64f84ffd058620d3c69c2e37a4240169cfd971d43
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Sat Sep 27 20:56:33 EDT 2025
Sun Jun 29 16:53:18 EDT 2025
Wed Feb 19 02:24:26 EST 2025
Wed Oct 01 03:55:31 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Wed Aug 27 02:40:12 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c347t-e974de81ea144ff4efd31e4d64f84ffd058620d3c69c2e37a4240169cfd971d43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4736-3119
0000-0001-5981-0516
0000-0003-1400-8866
PMID 34882550
PQID 2659345373
PQPubID 85460
PageCount 11
ParticipantIDs pubmed_primary_34882550
proquest_miscellaneous_2608533317
crossref_primary_10_1109_TMI_2021_3134270
ieee_primary_9645567
proquest_journals_2659345373
crossref_citationtrail_10_1109_TMI_2021_3134270
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref1
ref17
ref16
ref38
ref19
Mangal (ref23) 2020
Rajpurkar (ref24) 2017
ref18
Vaswani (ref40)
Krizhevsky (ref13)
Sabour (ref29); 30
Mooney (ref42) 2020
Rana (ref2) 2020; 16
ref45
ref26
ref25
ref20
ref22
ref44
ref21
ref43
(ref3) 2021
Mobiny (ref35) 2020
ref28
ref27
ref8
ref7
ref9
ref4
ref5
(ref6) 2020
Xi (ref39) 2017
Cohen (ref41) 2020
Simonyan (ref15)
References_xml – ident: ref45
  doi: 10.1109/ICCVW.2019.00247
– ident: ref18
  doi: 10.1038/s41598-020-76550-z
– ident: ref30
  doi: 10.1007/978-3-030-00934-2_82
– ident: ref1
  doi: 10.1056/nejmoa2001017
– ident: ref22
  doi: 10.1109/CVPR.2017.195
– ident: ref37
  doi: 10.3389/frai.2021.598932
– ident: ref44
  doi: 10.1109/ACCESS.2020.3010287
– ident: ref8
  doi: 10.1148/radiol.2020203511
– ident: ref14
  doi: 10.1007/s13246-020-00865-4
– ident: ref27
  doi: 10.1109/CVPR.2016.90
– ident: ref26
  doi: 10.1109/CVPRW.2017.156
– ident: ref19
  doi: 10.1016/j.compbiomed.2020.103792
– year: 2020
  ident: ref23
  article-title: COVIDAID: COVID-19 detection using chest X-ray
  publication-title: arXiv:2004.09803
– ident: ref31
  doi: 10.1109/ICIP.2018.8451379
– ident: ref10
  doi: 10.21037/atm.2020.03.132
– volume: 30
  start-page: 3859
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref29
  article-title: Dynamic routing between capsules
– ident: ref17
  doi: 10.1609/aaai.v31i1.11231
– year: 2017
  ident: ref24
  article-title: CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning
  publication-title: arXiv:1711.05225
– ident: ref5
  doi: 10.1148/radiol.2020200343
– ident: ref25
  doi: 10.1109/TMI.2020.2993291
– ident: ref4
  doi: 10.1148/radiol.2020200642
– ident: ref28
  doi: 10.1007/s10489-020-02055-x
– ident: ref11
  doi: 10.1016/j.eng.2020.04.010
– year: 2017
  ident: ref39
  article-title: Capsule network performance on complex data
  publication-title: arXiv:1712.03480
– ident: ref32
  doi: 10.1109/ROBIO49542.2019.8961610
– ident: ref38
  doi: 10.1109/ICCVW.2019.00247
– volume-title: Kaggle Chest X-Ray Images (Pneumonia) Dataset
  year: 2020
  ident: ref42
– ident: ref33
  doi: 10.1016/j.patrec.2020.09.010
– year: 2020
  ident: ref35
  article-title: Radiologist-level COVID-19 detection using CT scans with detail-oriented capsule networks
  publication-title: arXiv:2004.07407
– ident: ref12
  doi: 10.1038/s41591-020-0931-3
– volume-title: WorldoMeter
  year: 2021
  ident: ref3
– ident: ref7
  doi: 10.1148/radiol.2020200463
– start-page: 1097
  volume-title: Proc. NIPS
  ident: ref13
  article-title: ImageNet classification with deep convolutional neural networks
– ident: ref34
  doi: 10.1016/j.chaos.2020.110122
– ident: ref21
  doi: 10.1016/j.cmpb.2020.105581
– start-page: 6000
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS)
  ident: ref40
  article-title: Attention is all you need
– ident: ref20
  doi: 10.1109/CVPR.2017.690
– ident: ref16
  doi: 10.48550/ARXIV.1704.04861
– volume-title: New Coronavirus Pneumonia Diagnosis and Treatment Plan (Trial Version 5 Revised)
  year: 2020
  ident: ref6
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref15
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref9
  doi: 10.1148/radiol.2020202944
– volume-title: COVID Chest X-Ray Dataset
  year: 2020
  ident: ref41
– ident: ref43
  doi: 10.1007/s10489-020-01978-9
– volume: 16
  start-page: 265
  year: 2020
  ident: ref2
  article-title: A review of coronavirus disease-2019 (COVID-19)
  publication-title: Int. J. Biosci
– ident: ref36
  doi: 10.1016/j.compbiomed.2021.104399
SSID ssj0014509
Score 2.4915717
Snippet The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1208
SubjectTerms Algorithms
Annotations
Attention
capsule networks
Chest
chest X-ray images
Convolution
Coronaviruses
COVID-19
COVID-19 - diagnostic imaging
Datasets
Deep Learning
Diagnosis
Feature extraction
Health care
Humans
Image classification
Iterative methods
Machine learning
Medical imaging
Model accuracy
multi-head attention
Neural Networks, Computer
Physicians
Pulmonary diseases
Routing
SARS-CoV-2
Transfer learning
Viral diseases
X-ray imaging
X-Rays
Title MHA-CoroCapsule: Multi-Head Attention Routing-Based Capsule Network for COVID-19 Chest X-Ray Image Classification
URI https://ieeexplore.ieee.org/document/9645567
https://www.ncbi.nlm.nih.gov/pubmed/34882550
https://www.proquest.com/docview/2659345373
https://www.proquest.com/docview/2608533317
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA4FGh5BAoyEhckvJvYjr3htgSqXaQUCbVob1FiTy6UTSnZA_x6xs5DgABxi5VxHppx_H2ZF8BzQhDONDrmqLTmKnE1r6xNeB0ba2olEqt9cnJxplcX6t0m3ezByykXBhFD8BnO_GHw5bvW7vyvsnmmVZpqsw_7ZqH7XK3JY6DSPpxD-IqxsRajSzLO5ufFmoigSIifSiWMb_4myW4JTMe_7EahvcrfkWbYcU5vQzE-ax9o8mm26-qZ_f5bGcf_fZk7cDhAT7bsbeUu7OH2CG79VJDwCG4Ug6v9GL4UqyXP2-s2r4hIX-IrFnJ1-YqMgi27rg-TZD6iiKby17QbOjbIsrM-uJwRImb5-4_rNzzJWO5bc7EN_1B9Y-vP9B1joSOnj1UK5nEPLk7fnucrPvRn4FYq03EkLuJwkWBFrKxpFDZOJqicVs2Cxi5OiS7FTlqdWYHSVIrgQ0KDxmUmcUreh4Ntu8WHwGrUtSCsUWXaKuI8C9MgUSlT1RpJhzaC-ain0g7Fy30PjcsykJg4K0nJpVdyOSg5ghfTjKu-cMc_ZI-9fia5QTURnIymUA4r-2spdJpJlUojI3g2naY16R0t1RbbnZchICslQbMIHvQmNF17tLxHf77nY7gpfIJFCKk8gYPueodPCPZ09dNg7z8A1vb5Zg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwEB4ti8TjwGN3gcACRuKChNskduyGWymsUtgUCXVRb1FiTy4sDSzpAX49Y-chQIC4xco4D804_r7MC-ApIQiraxVylEpxGdmKl8ZEvAq10ZWMI6NccnK-UtmZfLNJNnvwfMyFQUQffIYTd-h9-bYxO_erbJoqmSRKX4LLiZQy6bK1Rp-BTLqAjtjVjA1VPDglw3S6zpdEBeOIGKqQsXbt3wRZLsHp8Jf9yDdY-TvW9HvOyU3Ih6ftQk0-TnZtNTHffyvk-L-vcwtu9OCTzTtruQ17uD2A6z-VJDyAK3nvbD-EL3k254vmolmURKXP8QXz2bo8I7Ng87btAiWZiymiqfwl7YeW9bJs1YWXM8LEbPHuw_IVj1K2cM252Ia_L7-x5Sf6kjHfk9NFK3kDOYKzk9frRcb7Dg3cCKlbjsRGLM4iLImX1bXE2ooIpVWyntHYhgkRptAKo1ITo9ClJAAR0aC2qY6sFHdgf9ts8R6wClUVE9ooU2UksZ6ZrpHIlC4rhaRDE8B00FNh-vLlrovGeeFpTJgWpOTCKbnolRzAs3HG5650xz9kD51-RrleNQEcD6ZQ9Gv7axGrJBUyEVoE8GQ8TavSuVrKLTY7J0NQVggCZwHc7UxovPZgeff_fM_HcDVb56fF6XL19gFci126hQ-wPIb99mKHDwkEtdUjb_s_AA1x_LM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MHA-CoroCapsule%3A+Multi-Head+Attention+Routing-Based+Capsule+Network+for+COVID-19+Chest+X-Ray+Image+Classification&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Li%2C+Fudong&rft.au=Lu%2C+Xingyu&rft.au=Yuan%2C+Jianjun&rft.date=2022-05-01&rft.eissn=1558-254X&rft.volume=41&rft.issue=5&rft.spage=1208&rft_id=info:doi/10.1109%2FTMI.2021.3134270&rft_id=info%3Apmid%2F34882550&rft.externalDocID=34882550
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon