MHA-CoroCapsule: Multi-Head Attention Routing-Based Capsule Network for COVID-19 Chest X-Ray Image Classification

The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 41; no. 5; pp. 1208 - 1218
Main Authors Li, Fudong, Lu, Xingyu, Yuan, Jianjun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2021.3134270

Cover

More Information
Summary:The outbreak of COVID-19 threatens the lives and property safety of countless people and brings a tremendous pressure to health care systems worldwide. The principal challenge in the fight against this disease is the lack of efficient detection methods. AI-assisted diagnosis based on deep learning can detect COVID-19 cases for chest X-ray images automatically, and also improve the accuracy and efficiency of doctors' diagnosis. However, large scale annotation of chest X-ray images is difficult because of limited resources and heavy burden on the medical system. To meet the challenge, we propose a capsule network model with multi-head attention routing algorithm, called MHA-CoroCapsule, to provide fast and accurate diagnostics for COVID-19 diseases from chest X-ray images. The MHA-CoroCapsule consists of convolutional layers, two capsule layers, and a non-iterative, parameterized multi-head attention routing algorithm is used to quantify the relationship between the two capsule layers. The experiments are performed on a combined dataset constituted by two publicly available datasets including normal, non-COVID pneumonia and COVID-19 images. The model achieves the accuracy of 97.28%, recall of 97.36%, and precision of 97.38% even with a limited number of samples. The experimental results demonstrate that, contrary to the transfer learning and deep feature extraction approaches, the proposed MHA-CoroCapsule has an encouraging performance with fewer trainable parameters and does not require pretraining and plenty of training samples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2021.3134270