Accelerating Convolutional Sparse Coding for Curvilinear Structures Segmentation by Refining SCIRD-TS Filter Banks

Deep learning has shown great potential for curvilinear structure (e.g., retinal blood vessels and neurites) segmentation as demonstrated by a recent auto-context regression architecture based on filter banks learned by convolutional sparse coding. However, learning such filter banks is very time-co...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 35; no. 11; pp. 2381 - 2392
Main Authors Annunziata, Roberto, Trucco, Emanuele
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0278-0062
1558-254X
1558-254X
DOI10.1109/TMI.2016.2570123

Cover

More Information
Summary:Deep learning has shown great potential for curvilinear structure (e.g., retinal blood vessels and neurites) segmentation as demonstrated by a recent auto-context regression architecture based on filter banks learned by convolutional sparse coding. However, learning such filter banks is very time-consuming, thus limiting the amount of filters employed and the adaptation to other data sets (i.e., slow re-training). We address this limitation by proposing a novel acceleration strategy to speed-up convolutional sparse coding filter learning for curvilinear structure segmentation. Our approach is based on a novel initialisation strategy (warm start), and therefore it is different from recent methods improving the optimisation itself. Our warm-start strategy is based on carefully designed hand-crafted filters (SCIRD-TS), modelling appearance properties of curvilinear structures which are then refined by convolutional sparse coding. Experiments on four diverse data sets, including retinal blood vessels and neurites, suggest that the proposed method reduces significantly the time taken to learn convolutional filter banks (i.e., up to -82%) compared to conventional initialisation strategies. Remarkably, this speed-up does not worsen performance; in fact, filters learned with the proposed strategy often achieve a much lower reconstruction error and match or exceed the segmentation performance of random and DCT-based initialisation, when used as input to a random forest classifier.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0278-0062
1558-254X
1558-254X
DOI:10.1109/TMI.2016.2570123