Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model
We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO) to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based...
Saved in:
| Published in | Mathematical problems in engineering Vol. 2013; no. 2013; pp. 1 - 11 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2013
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI | 10.1155/2013/406047 |
Cover
| Summary: | We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO) to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO) in vague sets (IVSs) is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1024-123X 1026-7077 1563-5147 1563-5147 |
| DOI: | 10.1155/2013/406047 |