Robust stabilization of state delayed discrete-time Takagi-Sugeno fuzzy systems with input saturation via an anti-windup fuzzy design
We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attracti...
Saved in:
Published in | Chinese physics B Vol. 21; no. 11; pp. 533 - 540 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.11.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/11/118701 |
Cover
Summary: | We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach. |
---|---|
Bibliography: | anti-windup controller, Takagi-Sugeno fuzzy model, time delay, input saturation We consider the robust stabilization problem for discrete-time Takagi-Sugeno (T S) fuzzy systems with time- varied delays subjected to input saturation. We design static and dynamic anti-windup fuzzy controllers to ensure the convergence of all admissible initial states within the domain of attraction. Based on the project lemma and classical sector conditions, the conditions for the existence of solutions to this problem are obtained and expressed in terms of a set of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed design approach. 11-5639/O4 Song Xiao-Na, Fu Zhu-Mu, and Liu Lei-Po Electronic and Information Engineering College, Henan University of Science and Technology, Luoyang 471003, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/11/118701 |