Determination of the Diffusion Coefficients of Binary CH4 and C2H6 in a Supercritical CO2 Environment (500–2000 K and 100–1000 atm) by Molecular Dynamics Simulations
The self-diffusion coefficients of carbonaceous fuels in a supercritical CO2 environment provide transport information that can help us understand the Allam Cycle mechanism at a high pressure of 300 atm. The diffusion coefficients of pure CO2 and binary CO2/CH4 and CO2/C2H6 at high temperatures (500...
Saved in:
Published in | Energies (Basel) Vol. 17; no. 16; p. 4028 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1073 1996-1073 |
DOI | 10.3390/en17164028 |
Cover
Summary: | The self-diffusion coefficients of carbonaceous fuels in a supercritical CO2 environment provide transport information that can help us understand the Allam Cycle mechanism at a high pressure of 300 atm. The diffusion coefficients of pure CO2 and binary CO2/CH4 and CO2/C2H6 at high temperatures (500 K~2000 K) and high pressures (100 atm~1000 atm) are determined by molecular dynamics simulations in this study. Increasing the temperature leads to an increase in the diffusion coefficient, and increasing the pressure leads to a decrease in the diffusion coefficients for both methane and ethane. The diffusion coefficient of methane at 300 atm is approximately 0.012 cm2/s at 1000 K and 0.032 cm2/s at 1500 K. The diffusion coefficient of ethane at 300 atm is approximately 0.016 cm2/s at 1000 K and 0.045 cm2/s at 1500 K. The understanding of diffusion coefficients potentially leads to the reduction in fuel consumption and minimization of greenhouse gas emissions in the Allam Cycle. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE FE0025260 |
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en17164028 |