Cold Atom Cloud with High Optical Depth Measured with Large Duty Cycle

We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, an...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 6; pp. 96 - 99
Main Author 张骏 顾振杰 钱鹏 韩枝光 陈洁菲
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/32/6/064211

Cover

More Information
Summary:We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i~formation processing and communication.
Bibliography:ZHANG Jun, GU Zhen-Jie, QIAN Peng, nAN Zhi-Guang, CHEN Jie-Fei(Department of Physics, East China Normal University, Shanghai 200062)
11-1959/O4
We present a cold atom system with a dark-line two-dimensional magneto-optical trap, to increase the atomic density by suppressing the atomic radiation pressure. Optical depth (OD) and duty cycle are used to evaluate the system performance. We demonstrate a 100% increase in OD with the dark line, and obtain an ultrahigh OD of 264 with 10% for the duty cycle. Also, with an efficient dark line region, the OD could maintain above i00 with duty cycle as high as 30%. The cold atomic ensemble with an ultrahigh OD with a 10%-30% duty cycle is particularly advantageous in quantum i~formation processing and communication.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/6/064211