Native arbuscular mycorrhizal fungi drive ecophysiology through phenotypic integration and functional plasticity under the Sonoran desert conditions

Knowledge is scarce to what extent environmental drivers and native symbiotic fungi in soil induce abrupt (short‐term), systemic (multiple traits), or specific (a subset of traits) shifts in C3 plants' ecophysiological/mycorrhizal responses. We cultivated an emblematic native C3 species (Capsic...

Full description

Saved in:
Bibliographic Details
Published inPhysiologia plantarum Vol. 176; no. 5; pp. e14521 - n/a
Main Authors Jiménez, Alberto, Gutiérrez, Aldo, Orozco, Antonio, Vargas, Georgina, Morales, Idaly, Sánchez, Esteban, Muñoz, Ezequiel, Soto, Francisco, Martínez‐Téllez, Miguel Ángel, Esqueda, Martín
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.09.2024
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0031-9317
1399-3054
1399-3054
DOI10.1111/ppl.14521

Cover

More Information
Summary:Knowledge is scarce to what extent environmental drivers and native symbiotic fungi in soil induce abrupt (short‐term), systemic (multiple traits), or specific (a subset of traits) shifts in C3 plants' ecophysiological/mycorrhizal responses. We cultivated an emblematic native C3 species (Capsicum annuum var. glabriusculum, “Chiltepín”) to look at how the extreme heat of the Sonoran desert, sunlight regimes (low = 2, intermediate = 15, high = 46 mol m2 d−1) and density of native arbuscular mycorrhizal fungi in soil (low AMF = 1% v/v, high AMF = 100% v/v), drive shifts on mycorrhizal responses through multiple functional traits (106 traits). The warming thresholds were relentlessly harsh even under intensive shade (e.g. superheat maximum thresholds reached ranged between 47–63°C), and several pivotal traits were synergistically driven by AMF (e.g. photosynthetic capacity, biomass gain/allometry, and mycorrhizal colonization traits); whereas concurrently, sunlight regimes promoted most (76%) alterations in functional acclimation traits in the short‐term and opposite directions (e.g. survival, phenology, photosynthetic, carbon/nitrogen economy). Multidimensional reduction analysis suggests that the AMF promotes a synergistic impact on plants' phenotypic integration and functional plasticity in response to sunlight regimes; however, complex relationships among traits suggest that phenotypic variation determines the robustness degree of ecophysiological/mycorrhizal phenotypes between/within environments. Photosynthetic canopy surface expansion, Rubisco activity, photosynthetic nitrogen allocation, carbon gain, and differential colonization traits could be central to plants' overall ecophysiological/mycorrhizal fitness strengthening. In conclusion, we found evidence that a strong combined effect among environmental factors in which AMF are key effectors could drive important trade‐offs on plants' ecophysiological/mycorrhizal fitness in the short term.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0031-9317
1399-3054
1399-3054
DOI:10.1111/ppl.14521