SR-Unet: A Super-Resolution Algorithm for Ion Trap Mass Spectrometers Based on the Deep Neural Network

The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate betwe...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 95; no. 47; pp. 17407 - 17415
Main Authors Ai, Jiawen, Zhao, Weize, Yu, Quan, Qian, Xiang, Zhou, Jianhua, Huo, Xinming, Tang, Fei
Format Journal Article
LanguageEnglish
Published Washington American Chemical Society 28.11.2023
Subjects
Online AccessGet full text
ISSN0003-2700
1520-6882
1520-6882
DOI10.1021/acs.analchem.3c04172

Cover

Abstract The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate between adjacent mass-to-charge ratio ions, and the higher the resolution, the better the discrimination of complex mixtures. Quadrupole ion traps are generally considered as a low-resolution mass spectrometry method, but they have gained wide attention and development in recent years because of their suitability for miniaturization and high qualitative capability. For an ion trap mass spectrometer, the mass sensitivity and resolution can be mutually constrained and need to be balanced by setting an appropriate scanning speed. In this study, a super-resolution U-net algorithm (SR-Unet) is proposed for ion trap mass spectrometry, which can estimate the possible ions from the overlapping ion peaks of low-resolution spectra and improve the equivalent resolution while ensuring sufficient sensitivity and analysis speed of the instrument. By determining the mass spectra of a linear ion trap mass spectrometer (LTQ XL) in Turbo and Normal scan modes, the same unit mass resolution as that at a scan speed of 16,667 Da/s was successfully obtained at 125,000 Da/s. Also, the experiments demonstrated that the algorithm is capable of the mass-to-charge ratio and instrument migration. SR-Unet can be migrated and applied to a miniature mass spectrometer for cruise detection of volatile organic compounds (VOCs), and the identification of VOC species in Photochemical Assessment Monitoring Stations (PAMS) was improved from 31 to 50 species with the same monitoring and analysis speed requirement. Further, super-unit mass resolution peptide detection was achieved on a miniature mass spectrometer with the help of the SR-Unet algorithm, which reduced the full width at half-maxima (FWHM) of bradykinin divalent ions (m/z 531) from 0.35 to 0.15 Da at a scan speed of 375 Da/s and improved the equivalent resolution to 3540. The proposed method provides a new idea to enhance the field mixture detection capability of miniature ion trap mass spectrometers.
AbstractList The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate between adjacent mass-to-charge ratio ions, and the higher the resolution, the better the discrimination of complex mixtures. Quadrupole ion traps are generally considered as a low-resolution mass spectrometry method, but they have gained wide attention and development in recent years because of their suitability for miniaturization and high qualitative capability. For an ion trap mass spectrometer, the mass sensitivity and resolution can be mutually constrained and need to be balanced by setting an appropriate scanning speed. In this study, a super-resolution U-net algorithm (SR-Unet) is proposed for ion trap mass spectrometry, which can estimate the possible ions from the overlapping ion peaks of low-resolution spectra and improve the equivalent resolution while ensuring sufficient sensitivity and analysis speed of the instrument. By determining the mass spectra of a linear ion trap mass spectrometer (LTQ XL) in Turbo and Normal scan modes, the same unit mass resolution as that at a scan speed of 16,667 Da/s was successfully obtained at 125,000 Da/s. Also, the experiments demonstrated that the algorithm is capable of the mass-to-charge ratio and instrument migration. SR-Unet can be migrated and applied to a miniature mass spectrometer for cruise detection of volatile organic compounds (VOCs), and the identification of VOC species in Photochemical Assessment Monitoring Stations (PAMS) was improved from 31 to 50 species with the same monitoring and analysis speed requirement. Further, super-unit mass resolution peptide detection was achieved on a miniature mass spectrometer with the help of the SR-Unet algorithm, which reduced the full width at half-maxima (FWHM) of bradykinin divalent ions (m/z 531) from 0.35 to 0.15 Da at a scan speed of 375 Da/s and improved the equivalent resolution to 3540. The proposed method provides a new idea to enhance the field mixture detection capability of miniature ion trap mass spectrometers.
The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate between adjacent mass-to-charge ratio ions, and the higher the resolution, the better the discrimination of complex mixtures. Quadrupole ion traps are generally considered as a low-resolution mass spectrometry method, but they have gained wide attention and development in recent years because of their suitability for miniaturization and high qualitative capability. For an ion trap mass spectrometer, the mass sensitivity and resolution can be mutually constrained and need to be balanced by setting an appropriate scanning speed. In this study, a super-resolution U-net algorithm (SR-Unet) is proposed for ion trap mass spectrometry, which can estimate the possible ions from the overlapping ion peaks of low-resolution spectra and improve the equivalent resolution while ensuring sufficient sensitivity and analysis speed of the instrument. By determining the mass spectra of a linear ion trap mass spectrometer (LTQ XL) in Turbo and Normal scan modes, the same unit mass resolution as that at a scan speed of 16,667 Da/s was successfully obtained at 125,000 Da/s. Also, the experiments demonstrated that the algorithm is capable of the mass-to-charge ratio and instrument migration. SR-Unet can be migrated and applied to a miniature mass spectrometer for cruise detection of volatile organic compounds (VOCs), and the identification of VOC species in Photochemical Assessment Monitoring Stations (PAMS) was improved from 31 to 50 species with the same monitoring and analysis speed requirement. Further, super-unit mass resolution peptide detection was achieved on a miniature mass spectrometer with the help of the SR-Unet algorithm, which reduced the full width at half-maxima (FWHM) of bradykinin divalent ions (m/z 531) from 0.35 to 0.15 Da at a scan speed of 375 Da/s and improved the equivalent resolution to 3540. The proposed method provides a new idea to enhance the field mixture detection capability of miniature ion trap mass spectrometers.The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided new tools for field analysis and detection. The resolution of a mass spectrometer reflects the ability of the instrument to discriminate between adjacent mass-to-charge ratio ions, and the higher the resolution, the better the discrimination of complex mixtures. Quadrupole ion traps are generally considered as a low-resolution mass spectrometry method, but they have gained wide attention and development in recent years because of their suitability for miniaturization and high qualitative capability. For an ion trap mass spectrometer, the mass sensitivity and resolution can be mutually constrained and need to be balanced by setting an appropriate scanning speed. In this study, a super-resolution U-net algorithm (SR-Unet) is proposed for ion trap mass spectrometry, which can estimate the possible ions from the overlapping ion peaks of low-resolution spectra and improve the equivalent resolution while ensuring sufficient sensitivity and analysis speed of the instrument. By determining the mass spectra of a linear ion trap mass spectrometer (LTQ XL) in Turbo and Normal scan modes, the same unit mass resolution as that at a scan speed of 16,667 Da/s was successfully obtained at 125,000 Da/s. Also, the experiments demonstrated that the algorithm is capable of the mass-to-charge ratio and instrument migration. SR-Unet can be migrated and applied to a miniature mass spectrometer for cruise detection of volatile organic compounds (VOCs), and the identification of VOC species in Photochemical Assessment Monitoring Stations (PAMS) was improved from 31 to 50 species with the same monitoring and analysis speed requirement. Further, super-unit mass resolution peptide detection was achieved on a miniature mass spectrometer with the help of the SR-Unet algorithm, which reduced the full width at half-maxima (FWHM) of bradykinin divalent ions (m/z 531) from 0.35 to 0.15 Da at a scan speed of 375 Da/s and improved the equivalent resolution to 3540. The proposed method provides a new idea to enhance the field mixture detection capability of miniature ion trap mass spectrometers.
Author Yu, Quan
Qian, Xiang
Zhao, Weize
Zhou, Jianhua
Tang, Fei
Huo, Xinming
Ai, Jiawen
Author_xml – sequence: 1
  givenname: Jiawen
  surname: Ai
  fullname: Ai, Jiawen
  organization: Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Weize
  surname: Zhao
  fullname: Zhao, Weize
  organization: Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Quan
  orcidid: 0000-0002-6995-6583
  surname: Yu
  fullname: Yu, Quan
  organization: Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
– sequence: 4
  givenname: Xiang
  orcidid: 0000-0003-2487-8785
  surname: Qian
  fullname: Qian, Xiang
  organization: Division of Advanced Manufacturing, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
– sequence: 5
  givenname: Jianhua
  orcidid: 0000-0001-9895-8679
  surname: Zhou
  fullname: Zhou, Jianhua
  organization: School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China, Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 6
  givenname: Xinming
  surname: Huo
  fullname: Huo, Xinming
  organization: School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China, Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 7
  givenname: Fei
  orcidid: 0000-0001-8155-1178
  surname: Tang
  fullname: Tang, Fei
  organization: State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
BookMark eNqFkctOwzAQRS0EEuXxBywssWGTMnacxGFX3kg8JNquI8ed0JQkDrYjxN_j8th0Aasrjc4Zaebuke3OdEjIEYMxA85OlXZj1alGL7EdxxoEy_gWGbGEQ5RKybfJCADiiGcAu2TPuRUAY8DSEammz9G8Q39GJ3Q69GijZ3SmGXxtOjppXoyt_bKllbH0LkxmVvX0QTlHpz1qb02LHq2j58rhggbAL5FeIvb0EQermhD-3djXA7JTqcbh4U_uk_n11eziNrp_urm7mNxHOhaJjzBFJRiKJOUlY5VCAbHMygx5zEuZV0maMblgsEhywRGkSCoJpSh1mWeiylW8T06-9_bWvA3ofNHWTmPTqA7N4AoevHB4Ivj_qMwhTlmepgE93kBXZrDh4V9UxmXG4zV19k1pa5yzWBW69mr9SG9V3RQMinVbRWir-G2r-GkryGJD7m3dKvvxt_YJSKKdyQ
CitedBy_id crossref_primary_10_1021_acs_analchem_4c05761
Cites_doi 10.1021/ed063p617
10.1021/acs.analchem.7b01689
10.48550/arXiv.1412.6980
10.1134/S1070427220080182
10.1021/acs.analchem.2c02093
10.1002/jms.856
10.1021/acs.analchem.7b02566
10.1021/acs.analchem.6b02222
10.1002/rcm.6951
10.1016/j.chemolab.2017.12.010
10.13031/aim.202100865
10.3390/polym11030567
10.1021/acs.analchem.2c03505
10.1021/ac048636m
10.1016/S1044-0305(01)00248-3
10.1007/s13361-017-1683-2
10.1021/ac300898h
10.3390/bioengineering10091079
10.1016/j.talanta.2019.05.053
10.1016/S1872-2040(17)61028-4
10.1016/j.aca.2020.03.055
10.1002/pmic.202200112
10.1021/acs.analchem.7b03797
10.1002/rcm.6343
10.1103/PhysRevLett.96.120801
10.1002/mas.21520
10.1007/s00216-021-03244-4
10.1016/j.jhazmat.2022.129116
10.1002/rcm.8736
10.1016/j.trac.2011.07.003
10.1021/acs.analchem.0c02082
10.1021/acs.analchem.6b01830
10.1088/1752-7163/aca119
10.1016/j.talanta.2023.124959
10.1080/05704929208018268
10.1021/acs.analchem.9b05460
10.1021/acs.analchem.8b04168
10.1007/978-3-319-24574-4_28
10.1016/j.talanta.2021.122352
10.1021/jasms.0c00019
10.1371/journal.pone.0265399
10.1146/annurev-anchem-062012-092604
10.1016/j.chemolab.2018.08.001
10.1021/acs.analchem.9b04824
10.1016/j.dib.2020.105548
10.1021/ac00037a023
10.1021/acs.analchem.2c05714
10.1021/acs.analchem.9b04811
10.1021/acs.jafc.7b00062
10.1021/acs.analchem.9b02983
10.1002/rcm.9398
10.1016/j.foodchem.2020.126536
10.1016/j.foodchem.2022.132808
10.1007/s12161-018-1173-6
ContentType Journal Article
Copyright Copyright American Chemical Society Nov 28, 2023
Copyright_xml – notice: Copyright American Chemical Society Nov 28, 2023
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
DOI 10.1021/acs.analchem.3c04172
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Toxicology Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
AIDS and Cancer Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Toxicology Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1520-6882
EndPage 17415
ExternalDocumentID 10_1021_acs_analchem_3c04172
GroupedDBID ---
-DZ
-~X
.DC
.K2
23M
4.4
53G
55A
5GY
5RE
5VS
6J9
7~N
85S
AABXI
AAHBH
AAYXX
ABBLG
ABHFT
ABHMW
ABJNI
ABLBI
ABMVS
ABOCM
ABPPZ
ABQRX
ABUCX
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACJ
ACKOT
ACNCT
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CITATION
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH9
IHE
JG~
KZ1
LMP
P2P
PQQKQ
ROL
RXW
TAE
TN5
UHB
UI2
UKR
VF5
VG9
W1F
WH7
X6Y
XSW
YZZ
ZCA
~02
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TM
7U5
7U7
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
7S9
L.6
ID FETCH-LOGICAL-c345t-e6ea41e4562b11fae40387b7e232b89f56718d10d5942e0845f80b4bcb974f9a3
IEDL.DBID ACS
ISSN 0003-2700
1520-6882
IngestDate Thu Oct 02 05:22:06 EDT 2025
Thu Jul 10 18:15:54 EDT 2025
Mon Jun 30 10:16:35 EDT 2025
Thu Apr 24 23:11:47 EDT 2025
Tue Jul 01 03:28:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c345t-e6ea41e4562b11fae40387b7e232b89f56718d10d5942e0845f80b4bcb974f9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9895-8679
0000-0002-6995-6583
0000-0003-2487-8785
0000-0001-8155-1178
PQID 2897287236
PQPubID 45400
PageCount 9
ParticipantIDs proquest_miscellaneous_2942101542
proquest_miscellaneous_2890361966
proquest_journals_2897287236
crossref_citationtrail_10_1021_acs_analchem_3c04172
crossref_primary_10_1021_acs_analchem_3c04172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-28
PublicationDateYYYYMMDD 2023-11-28
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-28
  day: 28
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Analytical chemistry (Washington)
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref14/cit14
  doi: 10.1021/ed063p617
– ident: ref6/cit6
  doi: 10.1021/acs.analchem.7b01689
– ident: ref56/cit56
  doi: 10.48550/arXiv.1412.6980
– ident: ref2/cit2
  doi: 10.1134/S1070427220080182
– ident: ref47/cit47
  doi: 10.1021/acs.analchem.2c02093
– ident: ref16/cit16
  doi: 10.1002/jms.856
– ident: ref30/cit30
  doi: 10.1021/acs.analchem.7b02566
– ident: ref22/cit22
  doi: 10.1021/acs.analchem.6b02222
– ident: ref18/cit18
  doi: 10.1002/rcm.6951
– ident: ref35/cit35
  doi: 10.1016/j.chemolab.2017.12.010
– ident: ref34/cit34
  doi: 10.13031/aim.202100865
– ident: ref8/cit8
  doi: 10.3390/polym11030567
– ident: ref32/cit32
  doi: 10.1021/acs.analchem.2c03505
– ident: ref24/cit24
  doi: 10.1021/ac048636m
– ident: ref25/cit25
  doi: 10.1016/S1044-0305(01)00248-3
– ident: ref52/cit52
  doi: 10.1007/s13361-017-1683-2
– ident: ref21/cit21
  doi: 10.1021/ac300898h
– ident: ref48/cit48
  doi: 10.3390/bioengineering10091079
– ident: ref28/cit28
  doi: 10.1016/j.talanta.2019.05.053
– ident: ref53/cit53
  doi: 10.1016/S1872-2040(17)61028-4
– ident: ref39/cit39
  doi: 10.1016/j.aca.2020.03.055
– ident: ref51/cit51
  doi: 10.1002/pmic.202200112
– ident: ref11/cit11
  doi: 10.1021/acs.analchem.7b03797
– ident: ref13/cit13
  doi: 10.1002/rcm.6343
– ident: ref17/cit17
  doi: 10.1103/PhysRevLett.96.120801
– ident: ref15/cit15
  doi: 10.1002/mas.21520
– ident: ref4/cit4
  doi: 10.1007/s00216-021-03244-4
– ident: ref44/cit44
  doi: 10.1016/j.jhazmat.2022.129116
– ident: ref31/cit31
  doi: 10.1002/rcm.8736
– ident: ref54/cit54
– ident: ref20/cit20
  doi: 10.1016/j.trac.2011.07.003
– ident: ref45/cit45
  doi: 10.1021/acs.analchem.0c02082
– ident: ref19/cit19
  doi: 10.1021/acs.analchem.6b01830
– ident: ref42/cit42
  doi: 10.1088/1752-7163/aca119
– ident: ref41/cit41
  doi: 10.1016/j.talanta.2023.124959
– ident: ref49/cit49
  doi: 10.1080/05704929208018268
– ident: ref29/cit29
  doi: 10.1021/acs.analchem.9b05460
– ident: ref9/cit9
  doi: 10.1021/acs.analchem.8b04168
– ident: ref55/cit55
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref7/cit7
  doi: 10.1016/j.talanta.2021.122352
– ident: ref12/cit12
  doi: 10.1021/jasms.0c00019
– ident: ref43/cit43
  doi: 10.1371/journal.pone.0265399
– ident: ref5/cit5
  doi: 10.1146/annurev-anchem-062012-092604
– ident: ref36/cit36
  doi: 10.1016/j.chemolab.2018.08.001
– ident: ref50/cit50
  doi: 10.1021/acs.analchem.9b04824
– ident: ref3/cit3
  doi: 10.1016/j.dib.2020.105548
– ident: ref23/cit23
  doi: 10.1021/ac00037a023
– ident: ref40/cit40
  doi: 10.1021/acs.analchem.2c05714
– ident: ref26/cit26
  doi: 10.1021/acs.analchem.9b04811
– ident: ref1/cit1
  doi: 10.1021/acs.jafc.7b00062
– ident: ref10/cit10
  doi: 10.1021/acs.analchem.6b01830
– ident: ref27/cit27
  doi: 10.1021/acs.analchem.9b02983
– ident: ref46/cit46
  doi: 10.1002/rcm.9398
– ident: ref37/cit37
  doi: 10.1016/j.foodchem.2020.126536
– ident: ref33/cit33
  doi: 10.1016/j.foodchem.2022.132808
– ident: ref38/cit38
  doi: 10.1007/s12161-018-1173-6
SSID ssj0011016
Score 2.4622905
Snippet The mass spectrometer is an important tool for modern chemical analysis and detection. Especially, the emergence of miniature mass spectrometers has provided...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 17407
SubjectTerms Algorithms
Artificial neural networks
Bradykinin
Chemical analysis
Equivalence
Ion traps (instrumentation)
Ions
Mass spectra
Mass spectrometers
Mass spectrometry
Mass spectroscopy
Mixtures
Monitoring
Neural networks
Organic compounds
Photochemicals
photochemistry
Quadrupoles
Scientific imaging
Sensitivity analysis
Spectrometers
VOCs
Volatile organic compounds
Title SR-Unet: A Super-Resolution Algorithm for Ion Trap Mass Spectrometers Based on the Deep Neural Network
URI https://www.proquest.com/docview/2897287236
https://www.proquest.com/docview/2890361966
https://www.proquest.com/docview/2942101542
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVABC
  databaseName: American Chemical Society Journals
  customDbUrl:
  eissn: 1520-6882
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011016
  issn: 0003-2700
  databaseCode: ACS
  dateStart: 19470121
  isFulltext: true
  titleUrlDefault: https://pubs.acs.org/action/showPublications?display=journals
  providerName: American Chemical Society
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4QF-DAY4AYDBQkrhl9pC9uYzANJEBiTNqtStIEEKObRnfh12P3MRiI17V1q9Rx8n2Oa5uQoyhQobKUYYkKFOO-hDUH65t5QriYim6bvGvJ1bXf7fPLgTd4dxQ_R_Ad-1iol6YApcI3PDddZXGAXNxyAQqRCbV7s6ABOqJVgzyMp1aZct-8ZB6J5jfiHF06a-SmytEpfip5ak4z2VSvX0s2_nHg62S1JJq0VVjGBlnQaY0stav-bjWy8qEU4SYxvVvWT3V2Qlu0Nx3rCcOD_cIsaWt4P5o8Zg_PFCguvYArAHFjegXEm2ID-wxrHmCZTnoKoJhQEABeSc-0HlOs_gHjuC5-N98i_c75XbvLyh4MTLncy5j2teC2Rj9J2rYRmmO8WwYamJgMI-P5AG6JbSVexB1thdwzoSW5VBIcFRMJd5sspqNU7xAquFIhnp84QcITKxGBAIPgrohMYrxA1YlbzUesygLl2CdjGOeBcseOQaNxpdG41GidsNlT46JAxy_yjWqq43K5vsTgdQbgOjquXyeHs9swHxg9EakeTXMZQHvYsH6SASXYyEqd3X8Oa48sYyN7zHJ0wgZZzCZTvQ90J5MHuZG_AYLM_jU
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SR-Unet%3A+A+Super-Resolution+Algorithm+for+Ion+Trap+Mass+Spectrometers+Based+on+the+Deep+Neural+Network&rft.jtitle=Analytical+chemistry+%28Washington%29&rft.au=Ai%2C+Jiawen&rft.au=Zhao%2C+Weize&rft.au=Yu%2C+Quan&rft.au=Qian%2C+Xiang&rft.date=2023-11-28&rft.issn=0003-2700&rft.eissn=1520-6882&rft.volume=95&rft.issue=47&rft.spage=17407&rft.epage=17415&rft_id=info:doi/10.1021%2Facs.analchem.3c04172&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_analchem_3c04172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2700&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2700&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2700&client=summon