Far-infrared electroluminescence characteristics of an Si-based photodiode under a forward DC bias current
At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence int...
Saved in:
Published in | Chinese physics B Vol. 21; no. 6; pp. 468 - 471 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/6/067304 |
Cover
Summary: | At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research. |
---|---|
Bibliography: | At room temperature, the bias dependence of a far-infrared electroluminescence image of a photodiode is investi-gated in the dark condition. The results show that the electroluminescence image can be used to detect defects in the photodiode. Additionally, it is found that the electroluminescence intensity has a power law dependence on the dc bias current. The photodiode ideality factor could be obtained by a fitting a relationship between the electroluminescence intensity and the bias current. The device defect levels will be easily determined according to the infrared image and the extracted ideality factor value. This work is of guiding significance for current solar cell testing and research. photodiode, electroluminescence images, electroluminescence intensity Xiao Wen-Bo, He Xing-Dao, Zhang Zhi-Min, Gao Yi-Qing, and Liu Jiang-Tao( a) Key Laboratory of Nondestructive (lest (Ministry of Education), Nanchang Hangkong University, Nanchang 330063, China b) Department of Physics, Nanchang University, Nanehang 330031, China 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/6/067304 |