Numerical simulation and experimental validation of a direct current air corona discharge under atmospheric pressure

Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the si...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 7; pp. 368 - 377
Main Author 刘兴华 何为 杨帆 王虹宇 廖瑞金 肖汉光
Format Journal Article
LanguageEnglish
Published 01.07.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/7/075201

Cover

More Information
Summary:Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage- current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.
Bibliography:Air corona discharge is one of the critical problems associated with high-voltage equipment. Investigating the corona mechanism plays a key role in enhancing the electrical insulation performance. An improved self-consistent multi-component two-dimensional plasma hybrid model is presented for the simulation of a direct current atmospheric pressure corona discharge in air. The model is based on plasma hydrodynamic and chemical models, and includes 12 species and 26 reactions. In addition, the photoionization effect is introduced into the model. The simulation on a bar-plate electrode configuration with an inter-electrode gap of 5.0 mm is carried out. The discharge voltage- current characteristics and the current density distribution predicted by the hybrid model agree with the experimental measurements. In addition, the dynamics of volume charged species generation, discharge current waveform, current density distribution at an electrode, charge density, electron temperature, and electric field variations are investigated in detail based on the model. The results indicate that the model can contribute valuable insights into the physics of an air plasma discharge.
corona discharge, hybrid model, discharge voltage-current characteristics, current den-sity distribution
Liu Xing-Hua, He Wei, Yang Fan, Wang Hong-Yu, Liao Rui-Jin, and Xiao Han-Guang a) State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China b) Department of Physics, Anshan Normal University, Anshan 114005, China
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/7/075201