Extending a release-and-recapture scheme to single atom optical tweezer for effective temperature evaluation

By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective temperature of the cold atomic ensemble. We prepare a single atom in a large-magnetic-g...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 20; no. 7; pp. 151 - 157
Main Author 何军 杨保东 张天才 王军民
Format Journal Article
LanguageEnglish
Published 01.07.2011
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/20/7/073701

Cover

More Information
Summary:By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective temperature of the cold atomic ensemble. We prepare a single atom in a large-magnetic-gradient MOT and then transfer the trapped single atom into a 1064-nm microscopic optical tweezer. The energy of the single atom trapped in the tweezer is further reduced by polarization gradient cooling (PGC) and the effective temperature is evaluated by extending the R-R technique to a single atom tweezer. The typical effective temperature of a single atom in the tweezer is improved from about 105 μK to about 17 μK by applying the optimum PGC phase.
Bibliography:single atom, optical tweezer, effective temperature, release-and-recapture technique
By recording the fluorescence fraction of the cold atoms remaining in the magneto-optical trap (MOT) as a function of the release time, the release-and-recapture (R&R) method is utilized to evaluate the effective temperature of the cold atomic ensemble. We prepare a single atom in a large-magnetic-gradient MOT and then transfer the trapped single atom into a 1064-nm microscopic optical tweezer. The energy of the single atom trapped in the tweezer is further reduced by polarization gradient cooling (PGC) and the effective temperature is evaluated by extending the R-R technique to a single atom tweezer. The typical effective temperature of a single atom in the tweezer is improved from about 105 μK to about 17 μK by applying the optimum PGC phase.
11-5639/O4
He Jun, Yang Bao-Dong, Zhang Tian-Cai, Wang Jun-Min State Key Laboratory of Quantum Optics and Quantum Optics Devices, and Institute of Opto-Electronics Shanxi University, Taiyuan 030006, China
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/20/7/073701