A prediction method of milling chatter stability for complex surface mold
This paper proposes a kind of milling chatter stability prediction method used for the stability of milling free-form surface based on the time-domain. Firstly, a dynamic equation is established by considering the influence of mold surface curvature and cutting tool lead angle on dynamic chip thickn...
Saved in:
Published in | International journal of advanced manufacturing technology Vol. 89; no. 9-12; pp. 2637 - 2648 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0268-3768 1433-3015 |
DOI | 10.1007/s00170-016-9761-3 |
Cover
Summary: | This paper proposes a kind of milling chatter stability prediction method used for the stability of milling free-form surface based on the time-domain. Firstly, a dynamic equation is established by considering the influence of mold surface curvature and cutting tool lead angle on dynamic chip thickness without deformation. Then, the multi-delay milling system vibration displacement, which is given by the ratio of dynamic chip thickness and the static chip thickness as the threshold, was calculated based on the numerical method. Finally, the chatter stability domain based on the full-discretization method of milling chatter stability domain is compared to analyze the influence of the characteristics of free surface curvature on the chatter stability domain. The results of the experiment show that the time-domain simulation method can reveal the influence of different processing areas of free-form surface mold on the instability mechanism of the system. The change trend of milling chatter stability domain was found to be consistent with the experimental results. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0268-3768 1433-3015 |
DOI: | 10.1007/s00170-016-9761-3 |