Model-Based Recursive Partitioning
Recursive partitioning is embedded into the general and well-established class of parametric models that can be fitted using M-type estimators (including maximum likelihood). An algorithm for model-based recursive partitioning is suggested for which the basic steps are: (1) fit a parametric model to...
Saved in:
| Published in | Journal of computational and graphical statistics Vol. 17; no. 2; pp. 492 - 514 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
01.06.2008
American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1061-8600 1537-2715 |
| DOI | 10.1198/106186008X319331 |
Cover
| Summary: | Recursive partitioning is embedded into the general and well-established class of parametric models that can be fitted using M-type estimators (including maximum likelihood). An algorithm for model-based recursive partitioning is suggested for which the basic steps are: (1) fit a parametric model to a dataset; (2) test for parameter instability over a set of partitioning variables; (3) if there is some overall parameter instability, split the model with respect to the variable associated with the highest instability; (4) repeat the procedure in each of the daughter nodes. The algorithm yields a partitioned (or segmented) parametric model that can be effectively visualized and that subject-matter scientists are used to analyzing and interpreting. |
|---|---|
| Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 1061-8600 1537-2715 |
| DOI: | 10.1198/106186008X319331 |