A Discriminative Algorithm for Indoor Place Recognition Based on Clustering of Features and Images

In order to solve the problem of indoor place recognition for indoor service robot, a novel algorithm, clustering of features and images (CFI), is proposed in this work. Different from traditional indoor place recognition methods which are based on kernels or bag of features, with large margin class...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of automation and computing Vol. 14; no. 4; pp. 407 - 419
Main Authors Wang, Ke, Long, Xue-Xiong, Li, Rui-Feng, Zhao, Li-Jun
Format Journal Article
LanguageEnglish
Published Beijing Institute of Automation, Chinese Academy of Sciences 01.08.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1476-8186
2153-182X
1751-8520
2153-1838
DOI10.1007/s11633-017-1081-z

Cover

More Information
Summary:In order to solve the problem of indoor place recognition for indoor service robot, a novel algorithm, clustering of features and images (CFI), is proposed in this work. Different from traditional indoor place recognition methods which are based on kernels or bag of features, with large margin classifier, CFI proposed in this work is based on feature matching, image similarity and clustering of features and images. It establishes independent local feature clusters by feature cloud registration to represent each room, and defines image distance to describe the similarity between images or feature clusters, which determines the label of query images. Besides, it improves recognition speed by image scaling, with state inertia and hidden Markov model constraining the transition of the state to kill unreasonable wrong recognitions and achieves remarkable precision and speed. A series of experiments are conducted to test the algorithm based on standard databases, and it achieves recognition rate up to 97% and speed is over 30 fps, which is much superior to traditional methods. Its impressive precision and speed demonstrate the great discriminative power in the face of complicated environment.
Bibliography:Indoor place recognition, locally and globally independent, clustering of features and images (CFI), state inertia, hidden Markov model.
11-5350/TP
In order to solve the problem of indoor place recognition for indoor service robot, a novel algorithm, clustering of features and images (CFI), is proposed in this work. Different from traditional indoor place recognition methods which are based on kernels or bag of features, with large margin classifier, CFI proposed in this work is based on feature matching, image similarity and clustering of features and images. It establishes independent local feature clusters by feature cloud registration to represent each room, and defines image distance to describe the similarity between images or feature clusters, which determines the label of query images. Besides, it improves recognition speed by image scaling, with state inertia and hidden Markov model constraining the transition of the state to kill unreasonable wrong recognitions and achieves remarkable precision and speed. A series of experiments are conducted to test the algorithm based on standard databases, and it achieves recognition rate up to 97% and speed is over 30 fps, which is much superior to traditional methods. Its impressive precision and speed demonstrate the great discriminative power in the face of complicated environment.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1476-8186
2153-182X
1751-8520
2153-1838
DOI:10.1007/s11633-017-1081-z