Frequency-based design of a free piston Stirling engine using genetic algorithm

This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of th...

Full description

Saved in:
Bibliographic Details
Published inEnergy (Oxford) Vol. 109; pp. 466 - 480
Main Authors Zare, Sh, Tavakolpour-Saleh, A.R.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.08.2016
Subjects
Online AccessGet full text
ISSN0360-5442
DOI10.1016/j.energy.2016.04.119

Cover

Abstract This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of the displacer rod are considered as unknown variables. Then, based on a desirable operating frequency, positions of closed-loop poles of the engine system are selected. The unknown design parameters are thus found via an optimization scheme using GA. A new objective function based on the eigenvalues of the state matrix of the FPSE is proposed and GA is used to obtain the optimal values of design variables so that the objective function is minimized. Next, the effectiveness of the proposed design is evaluated through numerical simulation. Two mathematical approaches are presented to compute the phase difference between the motions of power and displacer pistons. Furthermore, the generated work and power of the FPSE are found based on the computed phase angle. Finally, the designed FPSE is constructed and primarily tested. It is found that the simulation results are in a good agreement with the experiment through which validity of the presented design technique is affirmed. •A novel frequency-based design method for free piston Stirling engines was presented.•The engine dynamics was modeled as a regulator system in modern control engineering.•A genetic algorithm-based optimization was conducted to find the design parameters.•Two mathematical schemes were proposed to investigate the phase difference.•Experimental results were in a good agreement with the simulation outcomes.
AbstractList This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of the displacer rod are considered as unknown variables. Then, based on a desirable operating frequency, positions of closed-loop poles of the engine system are selected. The unknown design parameters are thus found via an optimization scheme using GA. A new objective function based on the eigenvalues of the state matrix of the FPSE is proposed and GA is used to obtain the optimal values of design variables so that the objective function is minimized. Next, the effectiveness of the proposed design is evaluated through numerical simulation. Two mathematical approaches are presented to compute the phase difference between the motions of power and displacer pistons. Furthermore, the generated work and power of the FPSE are found based on the computed phase angle. Finally, the designed FPSE is constructed and primarily tested. It is found that the simulation results are in a good agreement with the experiment through which validity of the presented design technique is affirmed.
This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of the displacer rod are considered as unknown variables. Then, based on a desirable operating frequency, positions of closed-loop poles of the engine system are selected. The unknown design parameters are thus found via an optimization scheme using GA. A new objective function based on the eigenvalues of the state matrix of the FPSE is proposed and GA is used to obtain the optimal values of design variables so that the objective function is minimized. Next, the effectiveness of the proposed design is evaluated through numerical simulation. Two mathematical approaches are presented to compute the phase difference between the motions of power and displacer pistons. Furthermore, the generated work and power of the FPSE are found based on the computed phase angle. Finally, the designed FPSE is constructed and primarily tested. It is found that the simulation results are in a good agreement with the experiment through which validity of the presented design technique is affirmed. •A novel frequency-based design method for free piston Stirling engines was presented.•The engine dynamics was modeled as a regulator system in modern control engineering.•A genetic algorithm-based optimization was conducted to find the design parameters.•Two mathematical schemes were proposed to investigate the phase difference.•Experimental results were in a good agreement with the simulation outcomes.
Author Tavakolpour-Saleh, A.R.
Zare, Sh
Author_xml – sequence: 1
  givenname: Sh
  surname: Zare
  fullname: Zare, Sh
– sequence: 2
  givenname: A.R.
  orcidid: 0000-0001-6981-1686
  surname: Tavakolpour-Saleh
  fullname: Tavakolpour-Saleh, A.R.
  email: tavakolpour@sutech.ac.ir, alitavakolpur@yahoo.com
BookMark eNqFkLFOwzAQhj0UiRZ4AwaPLAmO4yQOAxKqKCBV6gDMlmOfg6vULraL1LcnVZgYYDr90n3_nb4FmjnvAKHrguQFKerbbQ4OQn_M6ZhywvKiaGdoTsqaZBVj9BwtYtwSQiretnO0WQX4PIBTx6yTETTWEG3vsDdYYhMA8N7G5B1-TTYM1vUYXG8d4EM8hX48lqzCcuh9sOljd4nOjBwiXP3MC_S-enxbPmfrzdPL8mGdqbJsU1abumGtYbwyqjFNV2lKldLKVLRtK1MTDrxTTNZ113BaUsO1pkbT1nAoNW_KC3Qz9e6DH_-PSexsVDAM0oE_REEJqzhlvC7G1btpVQUfYwAjlE0yWe9SkHYQBREnc2IrJnPiZE4QJkZzI8x-wftgdzIc_8PuJwxGB18WgojKjpZB2wAqCe3t3wXfhqaPzA
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_115045
crossref_primary_10_1016_j_apenergy_2020_116258
crossref_primary_10_1016_j_energy_2020_119658
crossref_primary_10_1016_j_energy_2025_134458
crossref_primary_10_1016_j_enconman_2020_112706
crossref_primary_10_1177_0954407018779180
crossref_primary_10_3390_en15103569
crossref_primary_10_2139_ssrn_4053439
crossref_primary_10_1016_j_energy_2023_128177
crossref_primary_10_1039_D4SE00605D
crossref_primary_10_1007_s13369_018_3677_1
crossref_primary_10_1016_j_energy_2017_01_039
crossref_primary_10_1016_j_energy_2018_07_171
crossref_primary_10_1016_j_net_2021_01_022
crossref_primary_10_1016_j_sciaf_2025_e02540
crossref_primary_10_1016_j_energy_2017_02_030
crossref_primary_10_1016_j_energy_2017_02_151
crossref_primary_10_1016_j_applthermaleng_2018_09_088
crossref_primary_10_1016_j_applthermaleng_2023_121482
crossref_primary_10_1007_s40095_018_0267_7
crossref_primary_10_1016_j_nucengdes_2018_09_013
crossref_primary_10_1016_j_ref_2018_11_003
crossref_primary_10_1016_j_applthermaleng_2021_117635
crossref_primary_10_1016_j_apenergy_2021_116965
crossref_primary_10_1016_j_applthermaleng_2019_114544
crossref_primary_10_1016_j_energy_2019_07_069
crossref_primary_10_1016_j_energy_2020_116912
crossref_primary_10_2298_TSCI230709232L
crossref_primary_10_1016_j_energy_2019_116127
crossref_primary_10_1016_j_apenergy_2016_09_009
crossref_primary_10_1002_ese3_1577
crossref_primary_10_1002_er_4797
crossref_primary_10_1016_j_applthermaleng_2020_116128
crossref_primary_10_2139_ssrn_4053438
crossref_primary_10_3390_applmech3020021
crossref_primary_10_1016_j_chaos_2021_111526
crossref_primary_10_1515_meceng_2017_0029
crossref_primary_10_1016_j_apenergy_2019_114488
crossref_primary_10_1016_j_enconman_2018_06_042
crossref_primary_10_1016_j_energy_2018_08_197
crossref_primary_10_1016_j_applthermaleng_2022_118412
crossref_primary_10_1016_j_rineng_2024_101877
crossref_primary_10_1088_1755_1315_265_1_012014
crossref_primary_10_1016_j_energy_2023_129841
crossref_primary_10_3390_en13112759
crossref_primary_10_1016_j_apenergy_2017_05_059
crossref_primary_10_1016_j_energy_2024_133669
crossref_primary_10_1177_1687814017720878
crossref_primary_10_1080_02286203_2025_2459989
crossref_primary_10_1016_j_apenergy_2019_03_169
crossref_primary_10_1016_j_enconman_2019_06_035
crossref_primary_10_1016_j_energy_2021_120222
crossref_primary_10_1016_j_energy_2021_120466
crossref_primary_10_1016_j_enconman_2021_114394
crossref_primary_10_1016_j_energy_2020_117064
crossref_primary_10_1080_0305215X_2022_2127698
crossref_primary_10_1088_1742_6596_2558_1_012025
crossref_primary_10_1016_j_applthermaleng_2023_121357
crossref_primary_10_1080_15435075_2021_2021414
crossref_primary_10_1177_16878132221117017
crossref_primary_10_1016_j_apenergy_2018_05_122
crossref_primary_10_1002_ese3_1437
crossref_primary_10_1016_j_energy_2018_01_129
crossref_primary_10_1051_itmconf_20235202010
crossref_primary_10_1016_j_egyr_2022_11_046
crossref_primary_10_1002_er_4533
crossref_primary_10_1016_j_energy_2021_120454
crossref_primary_10_3390_en12010072
Cites_doi 10.1016/j.energy.2015.11.006
10.1016/0094-5765(80)90058-2
10.1051/epjap/2013120217
10.1016/j.ijheatmasstransfer.2013.12.010
10.1016/j.renene.2007.01.015
10.1016/j.egypro.2014.07.115
10.1016/j.solener.2010.12.004
10.1016/j.joei.2014.04.008
10.1016/S1364-0321(01)00006-5
10.1016/j.renene.2007.03.004
10.1016/S0306-2619(03)00153-3
10.1016/j.energy.2008.02.005
10.1016/j.engappai.2010.01.005
10.1016/j.renene.2015.03.041
10.1016/j.energy.2013.11.041
10.1016/j.renene.2010.12.006
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.energy.2016.04.119
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EndPage 480
ExternalDocumentID 10_1016_j_energy_2016_04_119
S0360544216305394
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-6f6749f485fc7f7b5d22ccdcf52995f608e8bc4a66b78232f8dd2fd29f8e3d873
IEDL.DBID .~1
ISSN 0360-5442
IngestDate Mon Sep 29 06:25:32 EDT 2025
Wed Oct 01 01:34:34 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Fri Feb 23 02:32:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Free piston Stirling engine
Genetic algorithm
Frequency-based design
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-6f6749f485fc7f7b5d22ccdcf52995f608e8bc4a66b78232f8dd2fd29f8e3d873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6981-1686
PQID 2045824861
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2045824861
crossref_citationtrail_10_1016_j_energy_2016_04_119
crossref_primary_10_1016_j_energy_2016_04_119
elsevier_sciencedirect_doi_10_1016_j_energy_2016_04_119
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-08-15
PublicationDateYYYYMMDD 2016-08-15
PublicationDate_xml – month: 08
  year: 2016
  text: 2016-08-15
  day: 15
PublicationDecade 2010
PublicationTitle Energy (Oxford)
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Riofrio, Al-Dakkan, Hofacker, Barth (bib6) 2008
Tavakolpour-Saleh, Draus, Tokhi, Mailah (bib26) 2010; 23
Hofacher, Tucker, Barth (bib8) 2011
Karabulut (bib15) 2011; Vol. 36
Xiao, Chen, Shi, Cen, Ni (bib27) 2014; 71
Kwankoameng, Silpsakoolsook, Savangvong (bib14) 2014; Vol. 52
Beckwith, Marangoni, Lienhard (bib25) 2007
Ogata (bib24) 1997
Walker (bib1) 1980
Choudhary, Balachandran (bib29) 2014; 9
Walker, Senft (bib2) 1985
Tavakolpour-Saleh, Jokar (bib19) 2016; 94
Kraitong, Mahkamov (bib23) 2011
Kalogirou (bib20) 2001; 5
Wood, Lane (bib4) 2003
Messai, Mellit, Guessoum, Kalogirou (bib22) 2011; 85
Saturno (bib3) 1994
Tavakolpour-Saleh, Zomorodian, Golneshan (bib10) 2008; 33
Ding, Chen, Sun (bib12) 2015; 88
Kalogirou (bib21) 2004; 77
Begot, Layes, Lanzetta, Nika (bib9) 2013
Lia, Haramurab, Katob, Tanga (bib18) 2014; 64
Mabrouk, Kheiri, Feidt (bib16) 2015
Timoumi, Tlili, Nasrallah (bib17) 2008; 33
Jakubowski (bib5) 1979; 7
Kanzaka, Iwabuchi (bib28) 1992; 35
Hsieh, Hsu, Chiou (bib13) 2008; 33
Jokar, Tavakolpour-Saleh (bib11) 2015; Vol. 81
Barth, Hofacker (bib7) 2009
Ogata (10.1016/j.energy.2016.04.119_bib24) 1997
Begot (10.1016/j.energy.2016.04.119_bib9) 2013
Walker (10.1016/j.energy.2016.04.119_bib1) 1980
Riofrio (10.1016/j.energy.2016.04.119_bib6) 2008
Tavakolpour-Saleh (10.1016/j.energy.2016.04.119_bib10) 2008; 33
Hsieh (10.1016/j.energy.2016.04.119_bib13) 2008; 33
Kwankoameng (10.1016/j.energy.2016.04.119_bib14) 2014; Vol. 52
Tavakolpour-Saleh (10.1016/j.energy.2016.04.119_bib19) 2016; 94
Walker (10.1016/j.energy.2016.04.119_bib2) 1985
Kraitong (10.1016/j.energy.2016.04.119_bib23) 2011
Lia (10.1016/j.energy.2016.04.119_bib18) 2014; 64
Jokar (10.1016/j.energy.2016.04.119_bib11) 2015; Vol. 81
Jakubowski (10.1016/j.energy.2016.04.119_bib5) 1979; 7
Wood (10.1016/j.energy.2016.04.119_bib4) 2003
Choudhary (10.1016/j.energy.2016.04.119_bib29) 2014; 9
Saturno (10.1016/j.energy.2016.04.119_bib3) 1994
Kalogirou (10.1016/j.energy.2016.04.119_bib20) 2001; 5
Kalogirou (10.1016/j.energy.2016.04.119_bib21) 2004; 77
Xiao (10.1016/j.energy.2016.04.119_bib27) 2014; 71
Ding (10.1016/j.energy.2016.04.119_bib12) 2015; 88
Hofacher (10.1016/j.energy.2016.04.119_bib8) 2011
Timoumi (10.1016/j.energy.2016.04.119_bib17) 2008; 33
Messai (10.1016/j.energy.2016.04.119_bib22) 2011; 85
Kanzaka (10.1016/j.energy.2016.04.119_bib28) 1992; 35
Mabrouk (10.1016/j.energy.2016.04.119_bib16) 2015
Tavakolpour-Saleh (10.1016/j.energy.2016.04.119_bib26) 2010; 23
Beckwith (10.1016/j.energy.2016.04.119_bib25) 2007
Karabulut (10.1016/j.energy.2016.04.119_bib15) 2011; Vol. 36
Barth (10.1016/j.energy.2016.04.119_bib7) 2009
References_xml – volume: 64
  start-page: 31
  year: 2014
  end-page: 43
  ident: bib18
  article-title: Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers
  publication-title: Energy
– volume: 5
  start-page: 373
  year: 2001
  end-page: 401
  ident: bib20
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sustain Energy Rev
– year: 1980
  ident: bib1
  article-title: Stirling engines
– start-page: 1
  year: 2015
  end-page: 7
  ident: bib16
  article-title: Effect of leakage losses on the performance of a β type Stirling engine
  publication-title: Energy
– volume: Vol. 36
  start-page: 1704
  year: 2011
  end-page: 1709
  ident: bib15
  article-title: Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles
  publication-title: Renew Energy
– volume: 77
  start-page: 383
  year: 2004
  end-page: 405
  ident: bib21
  article-title: Optimization of solar systems using artificial neural-networks and genetic algorithms
  publication-title: Appl Energy
– volume: 23
  start-page: 1388
  year: 2010
  end-page: 1397
  ident: bib26
  article-title: Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system
  publication-title: Eng Appl Artif Intell
– volume: 7
  start-page: 169
  year: 1979
  end-page: 181
  ident: bib5
  article-title: Radioisotope-powered free-piston Stirling engine for space application
  publication-title: Acta Astronaut
– start-page: 1533
  year: 2008
  end-page: 1538
  ident: bib6
  article-title: Control based design of free-piston Stirling engine
  publication-title: American control Conference, Westin Seattle Hotel, Seattle Washington, USA
– volume: 33
  start-page: 1100
  year: 2008
  end-page: 1114
  ident: bib17
  article-title: Design and performance optimization of GPU-3 Stirling engines
  publication-title: Energy
– start-page: 30901
  year: 2013
  ident: bib9
  article-title: Stability analysis of free piston Stirling engines
  publication-title: Eur Phys J Appl Phys
– volume: 88
  start-page: 36
  year: 2015
  end-page: 42
  ident: bib12
  article-title: Performance optimization of a linear phenomenological law system Stirling engine
  publication-title: J Energy Inst
– year: 1997
  ident: bib24
  article-title: Modern control engineering
– start-page: 377
  year: 2007
  ident: bib25
  article-title: Mechanical measurement
– volume: 85
  start-page: 265
  year: 2011
  end-page: 277
  ident: bib22
  article-title: Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation
  publication-title: Sol Energy
– volume: 9
  start-page: 1003
  year: 2014
  end-page: 1014
  ident: bib29
  article-title: Hopf instabilities in free piston Stirling engines
  publication-title: J Comput Nonlinear Dyn
– year: 2011
  ident: bib8
  article-title: Modeling and validation of free-piston Stirling engines using impedeance controlled hardware-in-the-loop
  publication-title: Dynamic systems and control conference, October31- November 2
– year: 1994
  ident: bib3
  article-title: Some mathematical model to describe the dynamic behavior of the B10 free-piston Stirling engine
– volume: 71
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib27
  article-title: Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater
  publication-title: Int J Heat Mass Transf
– start-page: 3945
  year: 2011
  end-page: 3952
  ident: bib23
  article-title: Optimisation of low temperature difference solar stirling engines using genetic algorithm
– start-page: 662
  year: 2003
  end-page: 667
  ident: bib4
  article-title: Advanced 35 W Free-Piston Stirling engine for space power applications
  publication-title: Proceedings of STAIF 2003 space Technology and applications international forum
– volume: 33
  start-page: 77
  year: 2008
  end-page: 87
  ident: bib10
  article-title: Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator
  publication-title: Renew Energy
– year: 2009
  ident: bib7
  article-title: Dynamic modeling of a regenerator for the control-based design of free-piston Stirling engines
  publication-title: Engineering research and innovation conference, Honolulu, Hawaii
– volume: 94
  start-page: 508
  year: 2016
  end-page: 523
  ident: bib19
  article-title: Neural network-based control of an intelligent solar Stirling pump
  publication-title: Energy
– year: 1985
  ident: bib2
  article-title: Free piston Stirling engines
– volume: 35
  start-page: 641
  year: 1992
  end-page: 646
  ident: bib28
  article-title: Study on Heat transfer of heat exchangers in Stirling engine
  publication-title: JSME Int J
– volume: 33
  start-page: 48
  year: 2008
  end-page: 54
  ident: bib13
  article-title: Integration of a free-piston Stirling engine and a moving grate incinerator
  publication-title: Renew Energy
– volume: Vol. 81
  start-page: 319
  year: 2015
  end-page: 337
  ident: bib11
  article-title: A novel solar –powered active low temperature differential Stirling pump
  publication-title: Renew Energy
– volume: Vol. 52
  start-page: 598
  year: 2014
  end-page: 609
  ident: bib14
  article-title: Investigation on stability and performance of a free piston Stirling engine
  publication-title: Energy Procedia
– year: 1985
  ident: 10.1016/j.energy.2016.04.119_bib2
– year: 1994
  ident: 10.1016/j.energy.2016.04.119_bib3
– start-page: 3945
  year: 2011
  ident: 10.1016/j.energy.2016.04.119_bib23
– volume: 94
  start-page: 508
  year: 2016
  ident: 10.1016/j.energy.2016.04.119_bib19
  article-title: Neural network-based control of an intelligent solar Stirling pump
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.006
– volume: 9
  start-page: 1003
  year: 2014
  ident: 10.1016/j.energy.2016.04.119_bib29
  article-title: Hopf instabilities in free piston Stirling engines
  publication-title: J Comput Nonlinear Dyn
– start-page: 1533
  year: 2008
  ident: 10.1016/j.energy.2016.04.119_bib6
  article-title: Control based design of free-piston Stirling engine
– volume: 7
  start-page: 169
  year: 1979
  ident: 10.1016/j.energy.2016.04.119_bib5
  article-title: Radioisotope-powered free-piston Stirling engine for space application
  publication-title: Acta Astronaut
  doi: 10.1016/0094-5765(80)90058-2
– start-page: 30901
  year: 2013
  ident: 10.1016/j.energy.2016.04.119_bib9
  article-title: Stability analysis of free piston Stirling engines
  publication-title: Eur Phys J Appl Phys
  doi: 10.1051/epjap/2013120217
– year: 1997
  ident: 10.1016/j.energy.2016.04.119_bib24
– volume: 71
  start-page: 1
  year: 2014
  ident: 10.1016/j.energy.2016.04.119_bib27
  article-title: Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2013.12.010
– volume: 33
  start-page: 48
  year: 2008
  ident: 10.1016/j.energy.2016.04.119_bib13
  article-title: Integration of a free-piston Stirling engine and a moving grate incinerator
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.01.015
– year: 2011
  ident: 10.1016/j.energy.2016.04.119_bib8
  article-title: Modeling and validation of free-piston Stirling engines using impedeance controlled hardware-in-the-loop
– volume: Vol. 52
  start-page: 598
  year: 2014
  ident: 10.1016/j.energy.2016.04.119_bib14
  article-title: Investigation on stability and performance of a free piston Stirling engine
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.07.115
– volume: 85
  start-page: 265
  year: 2011
  ident: 10.1016/j.energy.2016.04.119_bib22
  article-title: Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2010.12.004
– start-page: 377
  year: 2007
  ident: 10.1016/j.energy.2016.04.119_bib25
– volume: 88
  start-page: 36
  year: 2015
  ident: 10.1016/j.energy.2016.04.119_bib12
  article-title: Performance optimization of a linear phenomenological law system Stirling engine
  publication-title: J Energy Inst
  doi: 10.1016/j.joei.2014.04.008
– volume: 5
  start-page: 373
  year: 2001
  ident: 10.1016/j.energy.2016.04.119_bib20
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/S1364-0321(01)00006-5
– start-page: 1
  year: 2015
  ident: 10.1016/j.energy.2016.04.119_bib16
  article-title: Effect of leakage losses on the performance of a β type Stirling engine
  publication-title: Energy
– year: 1980
  ident: 10.1016/j.energy.2016.04.119_bib1
– volume: 33
  start-page: 77
  year: 2008
  ident: 10.1016/j.energy.2016.04.119_bib10
  article-title: Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2007.03.004
– volume: 77
  start-page: 383
  year: 2004
  ident: 10.1016/j.energy.2016.04.119_bib21
  article-title: Optimization of solar systems using artificial neural-networks and genetic algorithms
  publication-title: Appl Energy
  doi: 10.1016/S0306-2619(03)00153-3
– year: 2009
  ident: 10.1016/j.energy.2016.04.119_bib7
  article-title: Dynamic modeling of a regenerator for the control-based design of free-piston Stirling engines
– volume: 33
  start-page: 1100
  year: 2008
  ident: 10.1016/j.energy.2016.04.119_bib17
  article-title: Design and performance optimization of GPU-3 Stirling engines
  publication-title: Energy
  doi: 10.1016/j.energy.2008.02.005
– volume: 23
  start-page: 1388
  year: 2010
  ident: 10.1016/j.energy.2016.04.119_bib26
  article-title: Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.01.005
– volume: Vol. 81
  start-page: 319
  year: 2015
  ident: 10.1016/j.energy.2016.04.119_bib11
  article-title: A novel solar –powered active low temperature differential Stirling pump
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.03.041
– volume: 64
  start-page: 31
  year: 2014
  ident: 10.1016/j.energy.2016.04.119_bib18
  article-title: Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers
  publication-title: Energy
  doi: 10.1016/j.energy.2013.11.041
– volume: 35
  start-page: 641
  year: 1992
  ident: 10.1016/j.energy.2016.04.119_bib28
  article-title: Study on Heat transfer of heat exchangers in Stirling engine
  publication-title: JSME Int J
– start-page: 662
  year: 2003
  ident: 10.1016/j.energy.2016.04.119_bib4
  article-title: Advanced 35 W Free-Piston Stirling engine for space power applications
– volume: Vol. 36
  start-page: 1704
  year: 2011
  ident: 10.1016/j.energy.2016.04.119_bib15
  article-title: Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.12.006
SSID ssj0005899
Score 2.4517572
Snippet This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 466
SubjectTerms algorithms
Free piston Stirling engine
Frequency-based design
Genetic algorithm
mathematical models
pistons
Title Frequency-based design of a free piston Stirling engine using genetic algorithm
URI https://dx.doi.org/10.1016/j.energy.2016.04.119
https://www.proquest.com/docview/2045824861
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0360-5442
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0360-5442
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0360-5442
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0360-5442
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0360-5442
  databaseCode: AKRWK
  dateStart: 19760301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005899
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wTwWvctnk0PYq4rAp6UMFbSPNYV7S77NaDF3-7mbT1hSB4bJmUMpnMTJJvvkHoyNLEGcolKQ2cVlGuic5sTrxMnM916lIfUb5XYnDHLu75_Rw67WphAFbZ-v7Gp0dv3b7ptdrsTUaj3k3wvSHfYFnIKIIlFcAJylgOXQyO377APGTsIQnCBKS78rmI8XKxvg4AXgIIT1Pg2_k9PP1w1DH69FfQcps24pPmz1bRnKvW0GJXVTxbQ5tnnxVrQbBdsrN1dN2fNmjpVwIRy2IbMRt47LHGfuocngC7QIVv6hEwXw2xixSFGBDxQxzsC8ocsX4ajqej-uF5A931z25PB6TtokAMpUVNhBc5KzyT3Jvc5yW3WWaMNZ6HSMS9SKSTYaK0EGXIFmjmpbWZt1nhpaNW5nQTzVfjym0hnFhgtw8bpNIxlhituTBlQrUrEq21T7cR7ZSnTEsxDp0unlSHJXtUjcoVqFwlLGxAim1EPkZNGoqNP-Tzbl7UN1NRIQr8MfKwm0YVVhFcjejKjV9mCkj5ZcakSHf-_fVdtARPcOCc8j00X09f3H7IWOryIJrkAVo4Ob8cXL0DtErtPA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXRAsV5WkkrmYTv-Icq6qrLZRyaCv1Zjl-LFuV7Go3PXDht9fjJLyEVIlrMo6imfHM2P7mM8B7z4vguNS0cbhbxaWllvmKRl2EWNkylDGjfM_U7FJ8vJJXW3A09sIgrHKI_X1Mz9F6eDIZtDlZLRaT8xR7U70hWKookifV4gE8FJJVuAL78OM3nIfOl0iiNEXxsX8ug7xCbrBDhJdCxtMSCXf-nZ_-itQ5_UyfwOOhbiSH_a_twlZo92BnbCve7MH-8a-WtSQ4zNnNU_gyXfdw6e8UU5YnPoM2yDISS-I6BLJCeoGWnHcLpL6ak5A5CglC4uckORj2ORJ7M1-uF93Xb8_gcnp8cTSjwzUK1HFed1RFVYk6Ci2jq2LVSM-Yc95FmVKRjKrQQSdLWaWaVC5wFrX3LHpWRx241xXfh-122YbnQAqP9PZphdQEIQpnrVSuKbgNdWGtjeUB8FF5xg0c43jVxY0ZwWTXple5QZWbQqQVSH0A9OeoVc-xcY98NdrF_OErJqWBe0a-G81o0jTCsxHbhuXtxiArv2ZCq_LFf3_9LezMLj6fmtOTs08v4RG-wd3nUr6C7W59G16n8qVr3mT3vAM52O7R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency-based+design+of+a+free+piston+Stirling+engine+using+genetic+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Zare%2C+Sh&rft.au=Tavakolpour-Saleh%2C+A.R.&rft.date=2016-08-15&rft.issn=0360-5442&rft.volume=109&rft.spage=466&rft.epage=480&rft_id=info:doi/10.1016%2Fj.energy.2016.04.119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_04_119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon