Frequency-based design of a free piston Stirling engine using genetic algorithm
This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of th...
        Saved in:
      
    
          | Published in | Energy (Oxford) Vol. 109; pp. 466 - 480 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.08.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-5442 | 
| DOI | 10.1016/j.energy.2016.04.119 | 
Cover
| Abstract | This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of the displacer rod are considered as unknown variables. Then, based on a desirable operating frequency, positions of closed-loop poles of the engine system are selected. The unknown design parameters are thus found via an optimization scheme using GA. A new objective function based on the eigenvalues of the state matrix of the FPSE is proposed and GA is used to obtain the optimal values of design variables so that the objective function is minimized. Next, the effectiveness of the proposed design is evaluated through numerical simulation. Two mathematical approaches are presented to compute the phase difference between the motions of power and displacer pistons. Furthermore, the generated work and power of the FPSE are found based on the computed phase angle. Finally, the designed FPSE is constructed and primarily tested. It is found that the simulation results are in a good agreement with the experiment through which validity of the presented design technique is affirmed.
•A novel frequency-based design method for free piston Stirling engines was presented.•The engine dynamics was modeled as a regulator system in modern control engineering.•A genetic algorithm-based optimization was conducted to find the design parameters.•Two mathematical schemes were proposed to investigate the phase difference.•Experimental results were in a good agreement with the simulation outcomes. | 
    
|---|---|
| AbstractList | This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of the displacer rod are considered as unknown variables. Then, based on a desirable operating frequency, positions of closed-loop poles of the engine system are selected. The unknown design parameters are thus found via an optimization scheme using GA. A new objective function based on the eigenvalues of the state matrix of the FPSE is proposed and GA is used to obtain the optimal values of design variables so that the objective function is minimized. Next, the effectiveness of the proposed design is evaluated through numerical simulation. Two mathematical approaches are presented to compute the phase difference between the motions of power and displacer pistons. Furthermore, the generated work and power of the FPSE are found based on the computed phase angle. Finally, the designed FPSE is constructed and primarily tested. It is found that the simulation results are in a good agreement with the experiment through which validity of the presented design technique is affirmed. This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of the FPSE is presented. The engine design parameters including mass and stiffness of power and displacer pistons and cross-sectional area of the displacer rod are considered as unknown variables. Then, based on a desirable operating frequency, positions of closed-loop poles of the engine system are selected. The unknown design parameters are thus found via an optimization scheme using GA. A new objective function based on the eigenvalues of the state matrix of the FPSE is proposed and GA is used to obtain the optimal values of design variables so that the objective function is minimized. Next, the effectiveness of the proposed design is evaluated through numerical simulation. Two mathematical approaches are presented to compute the phase difference between the motions of power and displacer pistons. Furthermore, the generated work and power of the FPSE are found based on the computed phase angle. Finally, the designed FPSE is constructed and primarily tested. It is found that the simulation results are in a good agreement with the experiment through which validity of the presented design technique is affirmed. •A novel frequency-based design method for free piston Stirling engines was presented.•The engine dynamics was modeled as a regulator system in modern control engineering.•A genetic algorithm-based optimization was conducted to find the design parameters.•Two mathematical schemes were proposed to investigate the phase difference.•Experimental results were in a good agreement with the simulation outcomes.  | 
    
| Author | Tavakolpour-Saleh, A.R. Zare, Sh  | 
    
| Author_xml | – sequence: 1 givenname: Sh surname: Zare fullname: Zare, Sh – sequence: 2 givenname: A.R. orcidid: 0000-0001-6981-1686 surname: Tavakolpour-Saleh fullname: Tavakolpour-Saleh, A.R. email: tavakolpour@sutech.ac.ir, alitavakolpur@yahoo.com  | 
    
| BookMark | eNqFkLFOwzAQhj0UiRZ4AwaPLAmO4yQOAxKqKCBV6gDMlmOfg6vULraL1LcnVZgYYDr90n3_nb4FmjnvAKHrguQFKerbbQ4OQn_M6ZhywvKiaGdoTsqaZBVj9BwtYtwSQiretnO0WQX4PIBTx6yTETTWEG3vsDdYYhMA8N7G5B1-TTYM1vUYXG8d4EM8hX48lqzCcuh9sOljd4nOjBwiXP3MC_S-enxbPmfrzdPL8mGdqbJsU1abumGtYbwyqjFNV2lKldLKVLRtK1MTDrxTTNZ113BaUsO1pkbT1nAoNW_KC3Qz9e6DH_-PSexsVDAM0oE_REEJqzhlvC7G1btpVQUfYwAjlE0yWe9SkHYQBREnc2IrJnPiZE4QJkZzI8x-wftgdzIc_8PuJwxGB18WgojKjpZB2wAqCe3t3wXfhqaPzA | 
    
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_115045 crossref_primary_10_1016_j_apenergy_2020_116258 crossref_primary_10_1016_j_energy_2020_119658 crossref_primary_10_1016_j_energy_2025_134458 crossref_primary_10_1016_j_enconman_2020_112706 crossref_primary_10_1177_0954407018779180 crossref_primary_10_3390_en15103569 crossref_primary_10_2139_ssrn_4053439 crossref_primary_10_1016_j_energy_2023_128177 crossref_primary_10_1039_D4SE00605D crossref_primary_10_1007_s13369_018_3677_1 crossref_primary_10_1016_j_energy_2017_01_039 crossref_primary_10_1016_j_energy_2018_07_171 crossref_primary_10_1016_j_net_2021_01_022 crossref_primary_10_1016_j_sciaf_2025_e02540 crossref_primary_10_1016_j_energy_2017_02_030 crossref_primary_10_1016_j_energy_2017_02_151 crossref_primary_10_1016_j_applthermaleng_2018_09_088 crossref_primary_10_1016_j_applthermaleng_2023_121482 crossref_primary_10_1007_s40095_018_0267_7 crossref_primary_10_1016_j_nucengdes_2018_09_013 crossref_primary_10_1016_j_ref_2018_11_003 crossref_primary_10_1016_j_applthermaleng_2021_117635 crossref_primary_10_1016_j_apenergy_2021_116965 crossref_primary_10_1016_j_applthermaleng_2019_114544 crossref_primary_10_1016_j_energy_2019_07_069 crossref_primary_10_1016_j_energy_2020_116912 crossref_primary_10_2298_TSCI230709232L crossref_primary_10_1016_j_energy_2019_116127 crossref_primary_10_1016_j_apenergy_2016_09_009 crossref_primary_10_1002_ese3_1577 crossref_primary_10_1002_er_4797 crossref_primary_10_1016_j_applthermaleng_2020_116128 crossref_primary_10_2139_ssrn_4053438 crossref_primary_10_3390_applmech3020021 crossref_primary_10_1016_j_chaos_2021_111526 crossref_primary_10_1515_meceng_2017_0029 crossref_primary_10_1016_j_apenergy_2019_114488 crossref_primary_10_1016_j_enconman_2018_06_042 crossref_primary_10_1016_j_energy_2018_08_197 crossref_primary_10_1016_j_applthermaleng_2022_118412 crossref_primary_10_1016_j_rineng_2024_101877 crossref_primary_10_1088_1755_1315_265_1_012014 crossref_primary_10_1016_j_energy_2023_129841 crossref_primary_10_3390_en13112759 crossref_primary_10_1016_j_apenergy_2017_05_059 crossref_primary_10_1016_j_energy_2024_133669 crossref_primary_10_1177_1687814017720878 crossref_primary_10_1080_02286203_2025_2459989 crossref_primary_10_1016_j_apenergy_2019_03_169 crossref_primary_10_1016_j_enconman_2019_06_035 crossref_primary_10_1016_j_energy_2021_120222 crossref_primary_10_1016_j_energy_2021_120466 crossref_primary_10_1016_j_enconman_2021_114394 crossref_primary_10_1016_j_energy_2020_117064 crossref_primary_10_1080_0305215X_2022_2127698 crossref_primary_10_1088_1742_6596_2558_1_012025 crossref_primary_10_1016_j_applthermaleng_2023_121357 crossref_primary_10_1080_15435075_2021_2021414 crossref_primary_10_1177_16878132221117017 crossref_primary_10_1016_j_apenergy_2018_05_122 crossref_primary_10_1002_ese3_1437 crossref_primary_10_1016_j_energy_2018_01_129 crossref_primary_10_1051_itmconf_20235202010 crossref_primary_10_1016_j_egyr_2022_11_046 crossref_primary_10_1002_er_4533 crossref_primary_10_1016_j_energy_2021_120454 crossref_primary_10_3390_en12010072  | 
    
| Cites_doi | 10.1016/j.energy.2015.11.006 10.1016/0094-5765(80)90058-2 10.1051/epjap/2013120217 10.1016/j.ijheatmasstransfer.2013.12.010 10.1016/j.renene.2007.01.015 10.1016/j.egypro.2014.07.115 10.1016/j.solener.2010.12.004 10.1016/j.joei.2014.04.008 10.1016/S1364-0321(01)00006-5 10.1016/j.renene.2007.03.004 10.1016/S0306-2619(03)00153-3 10.1016/j.energy.2008.02.005 10.1016/j.engappai.2010.01.005 10.1016/j.renene.2015.03.041 10.1016/j.energy.2013.11.041 10.1016/j.renene.2010.12.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2016 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.energy.2016.04.119 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EndPage | 480 | 
    
| ExternalDocumentID | 10_1016_j_energy_2016_04_119 S0360544216305394  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c339t-6f6749f485fc7f7b5d22ccdcf52995f608e8bc4a66b78232f8dd2fd29f8e3d873 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-5442 | 
    
| IngestDate | Mon Sep 29 06:25:32 EDT 2025 Wed Oct 01 01:34:34 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Fri Feb 23 02:32:43 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Free piston Stirling engine Genetic algorithm Frequency-based design  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c339t-6f6749f485fc7f7b5d22ccdcf52995f608e8bc4a66b78232f8dd2fd29f8e3d873 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-6981-1686 | 
    
| PQID | 2045824861 | 
    
| PQPubID | 24069 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_2045824861 crossref_citationtrail_10_1016_j_energy_2016_04_119 crossref_primary_10_1016_j_energy_2016_04_119 elsevier_sciencedirect_doi_10_1016_j_energy_2016_04_119  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-08-15 | 
    
| PublicationDateYYYYMMDD | 2016-08-15 | 
    
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Energy (Oxford) | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Riofrio, Al-Dakkan, Hofacker, Barth (bib6) 2008 Tavakolpour-Saleh, Draus, Tokhi, Mailah (bib26) 2010; 23 Hofacher, Tucker, Barth (bib8) 2011 Karabulut (bib15) 2011; Vol. 36 Xiao, Chen, Shi, Cen, Ni (bib27) 2014; 71 Kwankoameng, Silpsakoolsook, Savangvong (bib14) 2014; Vol. 52 Beckwith, Marangoni, Lienhard (bib25) 2007 Ogata (bib24) 1997 Walker (bib1) 1980 Choudhary, Balachandran (bib29) 2014; 9 Walker, Senft (bib2) 1985 Tavakolpour-Saleh, Jokar (bib19) 2016; 94 Kraitong, Mahkamov (bib23) 2011 Kalogirou (bib20) 2001; 5 Wood, Lane (bib4) 2003 Messai, Mellit, Guessoum, Kalogirou (bib22) 2011; 85 Saturno (bib3) 1994 Tavakolpour-Saleh, Zomorodian, Golneshan (bib10) 2008; 33 Ding, Chen, Sun (bib12) 2015; 88 Kalogirou (bib21) 2004; 77 Begot, Layes, Lanzetta, Nika (bib9) 2013 Lia, Haramurab, Katob, Tanga (bib18) 2014; 64 Mabrouk, Kheiri, Feidt (bib16) 2015 Timoumi, Tlili, Nasrallah (bib17) 2008; 33 Jakubowski (bib5) 1979; 7 Kanzaka, Iwabuchi (bib28) 1992; 35 Hsieh, Hsu, Chiou (bib13) 2008; 33 Jokar, Tavakolpour-Saleh (bib11) 2015; Vol. 81 Barth, Hofacker (bib7) 2009 Ogata (10.1016/j.energy.2016.04.119_bib24) 1997 Begot (10.1016/j.energy.2016.04.119_bib9) 2013 Walker (10.1016/j.energy.2016.04.119_bib1) 1980 Riofrio (10.1016/j.energy.2016.04.119_bib6) 2008 Tavakolpour-Saleh (10.1016/j.energy.2016.04.119_bib10) 2008; 33 Hsieh (10.1016/j.energy.2016.04.119_bib13) 2008; 33 Kwankoameng (10.1016/j.energy.2016.04.119_bib14) 2014; Vol. 52 Tavakolpour-Saleh (10.1016/j.energy.2016.04.119_bib19) 2016; 94 Walker (10.1016/j.energy.2016.04.119_bib2) 1985 Kraitong (10.1016/j.energy.2016.04.119_bib23) 2011 Lia (10.1016/j.energy.2016.04.119_bib18) 2014; 64 Jokar (10.1016/j.energy.2016.04.119_bib11) 2015; Vol. 81 Jakubowski (10.1016/j.energy.2016.04.119_bib5) 1979; 7 Wood (10.1016/j.energy.2016.04.119_bib4) 2003 Choudhary (10.1016/j.energy.2016.04.119_bib29) 2014; 9 Saturno (10.1016/j.energy.2016.04.119_bib3) 1994 Kalogirou (10.1016/j.energy.2016.04.119_bib20) 2001; 5 Kalogirou (10.1016/j.energy.2016.04.119_bib21) 2004; 77 Xiao (10.1016/j.energy.2016.04.119_bib27) 2014; 71 Ding (10.1016/j.energy.2016.04.119_bib12) 2015; 88 Hofacher (10.1016/j.energy.2016.04.119_bib8) 2011 Timoumi (10.1016/j.energy.2016.04.119_bib17) 2008; 33 Messai (10.1016/j.energy.2016.04.119_bib22) 2011; 85 Kanzaka (10.1016/j.energy.2016.04.119_bib28) 1992; 35 Mabrouk (10.1016/j.energy.2016.04.119_bib16) 2015 Tavakolpour-Saleh (10.1016/j.energy.2016.04.119_bib26) 2010; 23 Beckwith (10.1016/j.energy.2016.04.119_bib25) 2007 Karabulut (10.1016/j.energy.2016.04.119_bib15) 2011; Vol. 36 Barth (10.1016/j.energy.2016.04.119_bib7) 2009  | 
    
| References_xml | – volume: 64 start-page: 31 year: 2014 end-page: 43 ident: bib18 article-title: Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers publication-title: Energy – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: bib20 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sustain Energy Rev – year: 1980 ident: bib1 article-title: Stirling engines – start-page: 1 year: 2015 end-page: 7 ident: bib16 article-title: Effect of leakage losses on the performance of a β type Stirling engine publication-title: Energy – volume: Vol. 36 start-page: 1704 year: 2011 end-page: 1709 ident: bib15 article-title: Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles publication-title: Renew Energy – volume: 77 start-page: 383 year: 2004 end-page: 405 ident: bib21 article-title: Optimization of solar systems using artificial neural-networks and genetic algorithms publication-title: Appl Energy – volume: 23 start-page: 1388 year: 2010 end-page: 1397 ident: bib26 article-title: Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system publication-title: Eng Appl Artif Intell – volume: 7 start-page: 169 year: 1979 end-page: 181 ident: bib5 article-title: Radioisotope-powered free-piston Stirling engine for space application publication-title: Acta Astronaut – start-page: 1533 year: 2008 end-page: 1538 ident: bib6 article-title: Control based design of free-piston Stirling engine publication-title: American control Conference, Westin Seattle Hotel, Seattle Washington, USA – volume: 33 start-page: 1100 year: 2008 end-page: 1114 ident: bib17 article-title: Design and performance optimization of GPU-3 Stirling engines publication-title: Energy – start-page: 30901 year: 2013 ident: bib9 article-title: Stability analysis of free piston Stirling engines publication-title: Eur Phys J Appl Phys – volume: 88 start-page: 36 year: 2015 end-page: 42 ident: bib12 article-title: Performance optimization of a linear phenomenological law system Stirling engine publication-title: J Energy Inst – year: 1997 ident: bib24 article-title: Modern control engineering – start-page: 377 year: 2007 ident: bib25 article-title: Mechanical measurement – volume: 85 start-page: 265 year: 2011 end-page: 277 ident: bib22 article-title: Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation publication-title: Sol Energy – volume: 9 start-page: 1003 year: 2014 end-page: 1014 ident: bib29 article-title: Hopf instabilities in free piston Stirling engines publication-title: J Comput Nonlinear Dyn – year: 2011 ident: bib8 article-title: Modeling and validation of free-piston Stirling engines using impedeance controlled hardware-in-the-loop publication-title: Dynamic systems and control conference, October31- November 2 – year: 1994 ident: bib3 article-title: Some mathematical model to describe the dynamic behavior of the B10 free-piston Stirling engine – volume: 71 start-page: 1 year: 2014 end-page: 7 ident: bib27 article-title: Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater publication-title: Int J Heat Mass Transf – start-page: 3945 year: 2011 end-page: 3952 ident: bib23 article-title: Optimisation of low temperature difference solar stirling engines using genetic algorithm – start-page: 662 year: 2003 end-page: 667 ident: bib4 article-title: Advanced 35 W Free-Piston Stirling engine for space power applications publication-title: Proceedings of STAIF 2003 space Technology and applications international forum – volume: 33 start-page: 77 year: 2008 end-page: 87 ident: bib10 article-title: Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator publication-title: Renew Energy – year: 2009 ident: bib7 article-title: Dynamic modeling of a regenerator for the control-based design of free-piston Stirling engines publication-title: Engineering research and innovation conference, Honolulu, Hawaii – volume: 94 start-page: 508 year: 2016 end-page: 523 ident: bib19 article-title: Neural network-based control of an intelligent solar Stirling pump publication-title: Energy – year: 1985 ident: bib2 article-title: Free piston Stirling engines – volume: 35 start-page: 641 year: 1992 end-page: 646 ident: bib28 article-title: Study on Heat transfer of heat exchangers in Stirling engine publication-title: JSME Int J – volume: 33 start-page: 48 year: 2008 end-page: 54 ident: bib13 article-title: Integration of a free-piston Stirling engine and a moving grate incinerator publication-title: Renew Energy – volume: Vol. 81 start-page: 319 year: 2015 end-page: 337 ident: bib11 article-title: A novel solar –powered active low temperature differential Stirling pump publication-title: Renew Energy – volume: Vol. 52 start-page: 598 year: 2014 end-page: 609 ident: bib14 article-title: Investigation on stability and performance of a free piston Stirling engine publication-title: Energy Procedia – year: 1985 ident: 10.1016/j.energy.2016.04.119_bib2 – year: 1994 ident: 10.1016/j.energy.2016.04.119_bib3 – start-page: 3945 year: 2011 ident: 10.1016/j.energy.2016.04.119_bib23 – volume: 94 start-page: 508 year: 2016 ident: 10.1016/j.energy.2016.04.119_bib19 article-title: Neural network-based control of an intelligent solar Stirling pump publication-title: Energy doi: 10.1016/j.energy.2015.11.006 – volume: 9 start-page: 1003 year: 2014 ident: 10.1016/j.energy.2016.04.119_bib29 article-title: Hopf instabilities in free piston Stirling engines publication-title: J Comput Nonlinear Dyn – start-page: 1533 year: 2008 ident: 10.1016/j.energy.2016.04.119_bib6 article-title: Control based design of free-piston Stirling engine – volume: 7 start-page: 169 year: 1979 ident: 10.1016/j.energy.2016.04.119_bib5 article-title: Radioisotope-powered free-piston Stirling engine for space application publication-title: Acta Astronaut doi: 10.1016/0094-5765(80)90058-2 – start-page: 30901 year: 2013 ident: 10.1016/j.energy.2016.04.119_bib9 article-title: Stability analysis of free piston Stirling engines publication-title: Eur Phys J Appl Phys doi: 10.1051/epjap/2013120217 – year: 1997 ident: 10.1016/j.energy.2016.04.119_bib24 – volume: 71 start-page: 1 year: 2014 ident: 10.1016/j.energy.2016.04.119_bib27 article-title: Experimental study on heat transfer of oscillating flow of a tubular Stirling engine heater publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2013.12.010 – volume: 33 start-page: 48 year: 2008 ident: 10.1016/j.energy.2016.04.119_bib13 article-title: Integration of a free-piston Stirling engine and a moving grate incinerator publication-title: Renew Energy doi: 10.1016/j.renene.2007.01.015 – year: 2011 ident: 10.1016/j.energy.2016.04.119_bib8 article-title: Modeling and validation of free-piston Stirling engines using impedeance controlled hardware-in-the-loop – volume: Vol. 52 start-page: 598 year: 2014 ident: 10.1016/j.energy.2016.04.119_bib14 article-title: Investigation on stability and performance of a free piston Stirling engine publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.07.115 – volume: 85 start-page: 265 year: 2011 ident: 10.1016/j.energy.2016.04.119_bib22 article-title: Maximum power point tracking using a GA optimized fuzzy logic controller and its FPGA implementation publication-title: Sol Energy doi: 10.1016/j.solener.2010.12.004 – start-page: 377 year: 2007 ident: 10.1016/j.energy.2016.04.119_bib25 – volume: 88 start-page: 36 year: 2015 ident: 10.1016/j.energy.2016.04.119_bib12 article-title: Performance optimization of a linear phenomenological law system Stirling engine publication-title: J Energy Inst doi: 10.1016/j.joei.2014.04.008 – volume: 5 start-page: 373 year: 2001 ident: 10.1016/j.energy.2016.04.119_bib20 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/S1364-0321(01)00006-5 – start-page: 1 year: 2015 ident: 10.1016/j.energy.2016.04.119_bib16 article-title: Effect of leakage losses on the performance of a β type Stirling engine publication-title: Energy – year: 1980 ident: 10.1016/j.energy.2016.04.119_bib1 – volume: 33 start-page: 77 year: 2008 ident: 10.1016/j.energy.2016.04.119_bib10 article-title: Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator publication-title: Renew Energy doi: 10.1016/j.renene.2007.03.004 – volume: 77 start-page: 383 year: 2004 ident: 10.1016/j.energy.2016.04.119_bib21 article-title: Optimization of solar systems using artificial neural-networks and genetic algorithms publication-title: Appl Energy doi: 10.1016/S0306-2619(03)00153-3 – year: 2009 ident: 10.1016/j.energy.2016.04.119_bib7 article-title: Dynamic modeling of a regenerator for the control-based design of free-piston Stirling engines – volume: 33 start-page: 1100 year: 2008 ident: 10.1016/j.energy.2016.04.119_bib17 article-title: Design and performance optimization of GPU-3 Stirling engines publication-title: Energy doi: 10.1016/j.energy.2008.02.005 – volume: 23 start-page: 1388 year: 2010 ident: 10.1016/j.energy.2016.04.119_bib26 article-title: Genetic algorithm-based identification of transfer function parameters for a rectangular flexible plate system publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.01.005 – volume: Vol. 81 start-page: 319 year: 2015 ident: 10.1016/j.energy.2016.04.119_bib11 article-title: A novel solar –powered active low temperature differential Stirling pump publication-title: Renew Energy doi: 10.1016/j.renene.2015.03.041 – volume: 64 start-page: 31 year: 2014 ident: 10.1016/j.energy.2016.04.119_bib18 article-title: Analysis of a high performance model Stirling engine with compact porous-sheets heat exchangers publication-title: Energy doi: 10.1016/j.energy.2013.11.041 – volume: 35 start-page: 641 year: 1992 ident: 10.1016/j.energy.2016.04.119_bib28 article-title: Study on Heat transfer of heat exchangers in Stirling engine publication-title: JSME Int J – start-page: 662 year: 2003 ident: 10.1016/j.energy.2016.04.119_bib4 article-title: Advanced 35 W Free-Piston Stirling engine for space power applications – volume: Vol. 36 start-page: 1704 year: 2011 ident: 10.1016/j.energy.2016.04.119_bib15 article-title: Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles publication-title: Renew Energy doi: 10.1016/j.renene.2010.12.006  | 
    
| SSID | ssj0005899 | 
    
| Score | 2.4517572 | 
    
| Snippet | This paper focuses on the frequency-based design of a FPSE (free piston Stirling engine) using a GA (genetic algorithm). First, a mathematical description of... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 466 | 
    
| SubjectTerms | algorithms Free piston Stirling engine Frequency-based design Genetic algorithm mathematical models pistons  | 
    
| Title | Frequency-based design of a free piston Stirling engine using genetic algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.energy.2016.04.119 https://www.proquest.com/docview/2045824861  | 
    
| Volume | 109 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB72IT3wTwWvctnk0PYq4rAp6UMFbSPNYV7S77NaDF3-7mbT1hSB4bJmUMpnMTJJvvkHoyNLEGcolKQ2cVlGuic5sTrxMnM916lIfUb5XYnDHLu75_Rw67WphAFbZ-v7Gp0dv3b7ptdrsTUaj3k3wvSHfYFnIKIIlFcAJylgOXQyO377APGTsIQnCBKS78rmI8XKxvg4AXgIIT1Pg2_k9PP1w1DH69FfQcps24pPmz1bRnKvW0GJXVTxbQ5tnnxVrQbBdsrN1dN2fNmjpVwIRy2IbMRt47LHGfuocngC7QIVv6hEwXw2xixSFGBDxQxzsC8ocsX4ajqej-uF5A931z25PB6TtokAMpUVNhBc5KzyT3Jvc5yW3WWaMNZ6HSMS9SKSTYaK0EGXIFmjmpbWZt1nhpaNW5nQTzVfjym0hnFhgtw8bpNIxlhituTBlQrUrEq21T7cR7ZSnTEsxDp0unlSHJXtUjcoVqFwlLGxAim1EPkZNGoqNP-Tzbl7UN1NRIQr8MfKwm0YVVhFcjejKjV9mCkj5ZcakSHf-_fVdtARPcOCc8j00X09f3H7IWOryIJrkAVo4Ob8cXL0DtErtPA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXRAsV5WkkrmYTv-Icq6qrLZRyaCv1Zjl-LFuV7Go3PXDht9fjJLyEVIlrMo6imfHM2P7mM8B7z4vguNS0cbhbxaWllvmKRl2EWNkylDGjfM_U7FJ8vJJXW3A09sIgrHKI_X1Mz9F6eDIZtDlZLRaT8xR7U70hWKookifV4gE8FJJVuAL78OM3nIfOl0iiNEXxsX8ug7xCbrBDhJdCxtMSCXf-nZ_-itQ5_UyfwOOhbiSH_a_twlZo92BnbCve7MH-8a-WtSQ4zNnNU_gyXfdw6e8UU5YnPoM2yDISS-I6BLJCeoGWnHcLpL6ak5A5CglC4uckORj2ORJ7M1-uF93Xb8_gcnp8cTSjwzUK1HFed1RFVYk6Ci2jq2LVSM-Yc95FmVKRjKrQQSdLWaWaVC5wFrX3LHpWRx241xXfh-122YbnQAqP9PZphdQEIQpnrVSuKbgNdWGtjeUB8FF5xg0c43jVxY0ZwWTXple5QZWbQqQVSH0A9OeoVc-xcY98NdrF_OErJqWBe0a-G81o0jTCsxHbhuXtxiArv2ZCq_LFf3_9LezMLj6fmtOTs08v4RG-wd3nUr6C7W59G16n8qVr3mT3vAM52O7R | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency-based+design+of+a+free+piston+Stirling+engine+using+genetic+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Zare%2C+Sh&rft.au=Tavakolpour-Saleh%2C+A.R.&rft.date=2016-08-15&rft.issn=0360-5442&rft.volume=109&rft.spage=466&rft.epage=480&rft_id=info:doi/10.1016%2Fj.energy.2016.04.119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2016_04_119 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |