Orthogonal decomposition of tensor trains

In this paper, we study the problem of decomposing a given tensor into a tensor train such that the tensors at the vertices are orthogonally decomposable. When the tensor train has length two, and the orthogonally decomposable tensors at the two vertices are symmetric, we recover the decomposition b...

Full description

Saved in:
Bibliographic Details
Published inLinear & multilinear algebra Vol. 70; no. 21; pp. 6609 - 6639
Main Authors Halaseh, Karim, Muller, Tommi, Robeva, Elina
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 20.12.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0308-1087
1563-5139
DOI10.1080/03081087.2021.1965947

Cover

More Information
Summary:In this paper, we study the problem of decomposing a given tensor into a tensor train such that the tensors at the vertices are orthogonally decomposable. When the tensor train has length two, and the orthogonally decomposable tensors at the two vertices are symmetric, we recover the decomposition by considering random linear combinations of slices. Furthermore, if the tensors at the vertices are symmetric and low-rank but not orthogonally decomposable, we show that a whitening procedure can transform the problem into the orthogonal case. When the tensor network has length three or more and the tensors at the vertices are symmetric and orthogonally decomposable, we provide an algorithm for recovering them subject to some rank conditions. Finally, in the case of tensor trains of length two in which the tensors at the vertices are orthogonally decomposable but not necessarily symmetric, we show that the decomposition problem reduces to the novel problem of decomposing a matrix into an orthogonal matrix multiplied by diagonal matrices on either side. We provide and compare two solutions, one based on Sinkhorn's theorem and one on Procrustes' algorithm. We conclude with a multitude of open problems in linear and multilinear algebra that arose in our study.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0308-1087
1563-5139
DOI:10.1080/03081087.2021.1965947