Double-Matched Matrix Decomposition for Multi-View Data
We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data...
Saved in:
| Published in | Journal of computational and graphical statistics Vol. 31; no. 4; pp. 1114 - 1126 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
02.10.2022
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1061-8600 1537-2715 |
| DOI | 10.1080/10618600.2022.2067860 |
Cover
| Abstract | We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge.
Supplementary materials
for this article are available online. |
|---|---|
| AbstractList | We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge.
Supplementary materials
for this article are available online. We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge. Supplementary materials for this article are available online. |
| Author | Yuan, Dongbang Gaynanova, Irina |
| Author_xml | – sequence: 1 givenname: Dongbang orcidid: 0000-0002-3232-8137 surname: Yuan fullname: Yuan, Dongbang organization: Department of Statistics, Texas A&M University – sequence: 2 givenname: Irina orcidid: 0000-0002-4116-0268 surname: Gaynanova fullname: Gaynanova, Irina organization: Department of Statistics, Texas A&M University |
| BookMark | eNqFkE1LAzEQhoNUsK3-BGHB89Z8dJMsXpTWL2jxol7DNB-Yst3UbErtvzel9eJBL_POwPvODM8A9drQWoQuCR4RLPE1wZxIjvGIYkpz4SJPJ6hPKiZKKkjVy332lHvTGRp03RJjTHgt-khMw2bR2HIOSX9YU2SN_quYWh1W69D55ENbuBCL-aZJvnz3dltMIcE5OnXQdPbiqEP09nD_OnkqZy-Pz5O7WakZk6msmGFMV9zVuAZOFhSsYKYWzmnhzEKCoZoBp2bsyNhKScAsMAbMGNjKjCUboqvD3nUMnxvbJbUMm9jmk4oKJrmsqeDZdXNw6Ri6LlqntE-w_z1F8I0iWO1JqR9Sak9KHUnldPUrvY5-BXH3b-72kPNtJrSCbYiNUQl2TYguQqt9p9jfK74BVwWAaw |
| CitedBy_id | crossref_primary_10_1111_biom_13893 crossref_primary_10_1007_s11749_024_00923_z |
| Cites_doi | 10.1007/978-1-4612-4380-9_14 10.1162/REST_a_00043 10.1093/bioinformatics/btw324 10.1214/08-AOAS227 10.1109/JSEN.2010.2049351 10.1186/1471-2105-15-162 10.15252/msb.20178124 10.1111/biom.13010 10.1016/j.jmva.2018.03.008 10.1002/cem.1388 10.1016/j.jmva.2007.06.007 10.1186/1471-2105-10-246 10.1111/biom.13108 10.1080/10618600.2019.1568014 10.3758/s13428-013-0374-6 10.1080/01621459.2018.1543599 10.1214/21-AOAS1466 10.3982/ECTA8968 10.1198/jasa.2011.ap10089 10.1002/cem.1180010107 10.15446/rce.v39n2.52724 10.1093/bioinformatics/btx812 10.1186/s13059-020-02015-1 10.1137/18M1183480 10.1109/TNNLS.2015.2487364 10.1109/JPROC.2015.2474704 10.1137/S1064827500377332 10.1214/12-AOAS597 10.1093/bioinformatics/btw552 10.1111/biom.13141 10.1016/j.csda.2005.09.010 |
| ContentType | Journal Article |
| Copyright | 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
| Copyright_xml | – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022 – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1080/10618600.2022.2067860 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Mathematics |
| EISSN | 1537-2715 |
| EndPage | 1126 |
| ExternalDocumentID | 10_1080_10618600_2022_2067860 2067860 |
| Genre | Research Article |
| GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB ADXHL AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS UT5 UU3 WZA XWC ZGOLN ~S~ AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c338t-53d33c56f909a61b2ae73d97ffc7fdb8ad2c3a62d4f14e881adb00a033ae5d483 |
| ISSN | 1061-8600 |
| IngestDate | Wed Aug 13 09:50:37 EDT 2025 Thu Apr 24 23:04:30 EDT 2025 Wed Oct 01 02:49:39 EDT 2025 Mon Oct 20 23:46:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-53d33c56f909a61b2ae73d97ffc7fdb8ad2c3a62d4f14e881adb00a033ae5d483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3232-8137 0000-0002-4116-0268 |
| PQID | 2738689276 |
| PQPubID | 29738 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1080_10618600_2022_2067860 proquest_journals_2738689276 informaworld_taylorfrancis_310_1080_10618600_2022_2067860 crossref_citationtrail_10_1080_10618600_2022_2067860 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-02 |
| PublicationDateYYYYMMDD | 2022-10-02 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Journal of computational and graphical statistics |
| PublicationYear | 2022 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0030 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0011 CIT0033 CIT0014 CIT0036 CIT0013 Rosipal R. (CIT0026) 2005 CIT0035 Avron H. (CIT0004) 2013 CIT0016 CIT0015 CIT0037 CIT0019 Löfstedt T. (CIT0017) 2011; 25 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Efron B. (CIT0007) 2012; 1 Mazumder R. (CIT0018) 2010; 11 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0029 CIT0006 CIT0028 CIT0009 CIT0008 |
| References_xml | – ident: CIT0012 doi: 10.1007/978-1-4612-4380-9_14 – ident: CIT0022 doi: 10.1162/REST_a_00043 – ident: CIT0020 doi: 10.1093/bioinformatics/btw324 – ident: CIT0023 doi: 10.1214/08-AOAS227 – ident: CIT0013 doi: 10.1109/JSEN.2010.2049351 – ident: CIT0019 doi: 10.1186/1471-2105-15-162 – ident: CIT0003 doi: 10.15252/msb.20178124 – ident: CIT0021 doi: 10.1111/biom.13010 – ident: CIT0008 doi: 10.1016/j.jmva.2018.03.008 – volume: 25 start-page: 441 year: 2011 ident: CIT0017 publication-title: Journal of Chemometrics doi: 10.1002/cem.1388 – ident: CIT0028 doi: 10.1016/j.jmva.2007.06.007 – ident: CIT0031 doi: 10.1186/1471-2105-10-246 – ident: CIT0009 doi: 10.1111/biom.13108 – ident: CIT0014 doi: 10.1080/10618600.2019.1568014 – ident: CIT0027 doi: 10.3758/s13428-013-0374-6 – start-page: 347 volume-title: International Conference on Machine Learning year: 2013 ident: CIT0004 – ident: CIT0029 doi: 10.1080/01621459.2018.1543599 – ident: CIT0025 doi: 10.1214/21-AOAS1466 – ident: CIT0001 doi: 10.3982/ECTA8968 – ident: CIT0006 doi: 10.1198/jasa.2011.ap10089 – ident: CIT0033 doi: 10.1002/cem.1180010107 – ident: CIT0011 doi: 10.15446/rce.v39n2.52724 – start-page: 34 volume-title: International Statistical and Optimization Perspectives Workshop” Subspace, Latent Structure and Feature Selection” year: 2005 ident: CIT0026 – ident: CIT0010 – volume: 1 volume-title: Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction year: 2012 ident: CIT0007 – ident: CIT0032 doi: 10.1093/bioinformatics/btx812 – ident: CIT0002 doi: 10.1186/s13059-020-02015-1 – ident: CIT0030 doi: 10.1137/18M1183480 – ident: CIT0035 doi: 10.1109/TNNLS.2015.2487364 – ident: CIT0036 doi: 10.1109/JPROC.2015.2474704 – ident: CIT0015 doi: 10.1137/S1064827500377332 – ident: CIT0016 doi: 10.1214/12-AOAS597 – ident: CIT0005 – ident: CIT0034 doi: 10.1093/bioinformatics/btw552 – ident: CIT0024 doi: 10.1111/biom.13141 – ident: CIT0037 doi: 10.1016/j.csda.2005.09.010 – volume: 11 start-page: 2287 year: 2010 ident: CIT0018 publication-title: The Journal of Machine Learning Research |
| SSID | ssj0001697 |
| Score | 2.3604567 |
| Snippet | We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples.... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1114 |
| SubjectTerms | Data integration Decomposition Dimension reduction Iterative algorithms Iterative methods Matching Matrices (mathematics) Matrix factorization MicroRNAs Multi-block data Optimization Principal component analysis Professional soccer Soccer |
| Title | Double-Matched Matrix Decomposition for Multi-View Data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2067860 https://www.proquest.com/docview/2738689276 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1537-2715 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: AMVHM dateStart: 20121001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: AHDZW dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001697 issn: 1061-8600 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEG8QXvDBKGpA0eyDrz13295u-2hEQ0yOF4HwtunXGhKykGNJwL_emX7s3cFFxJfNZe_6cZ3pzHQ6vxlCPhllJOMWsU7KUOGNppJpS6VgXmpuamMROzw7qg9PxI-z6dk9dMlgJvb3WlzJ_1AV3gFdESX7BMqOncIL-Az0hSdQGJ7_RGOwfs2FpzONS4_xEsP8_BZECMaJp2CsEEYYULb0FDEqBxGLts4gtaHAQ3YOokM9ZLOOuEl8H1I6j2LiJrpODy77X0Yn_YeBPPqu11hpNUifearOnR0LcCbFa_ElXyMeFqmsy3ht4rN8bICsEYGZBWgS4-fL3oEgDUGOiiXNimiltVI7hjnieDjcBCczwbTysi4Xaipfzd_TXmNMYZWSneZuWuymTd08I1sMxD7W9uDl0aiqq1R9J__TDPGS5ee1s1kxXlZS2z5Q5cE-OX5JXiQ6Fl8il7wiG77fIc9nY1be6x2y_XOk4mvSrDJPEZmnWGGeAkYuFsxTIPO8ISffvx1_PaSpiga1nMuBTrnjsBnrTpVK15Vh2jfcqabrbNM5I7VjluuaOdFVwktZaQeiWJecaz91QvK3ZLO_7P0uKXjjKik8mPAWfu2MYY5xrxWcUY2CL_aIyMvT2pRiHiudXLR_Jc4emYzNrmKOlccaqOW1b4fg3OpiJZqWP9J2PxOqTVv5ukV8Wi0VsMi7p87lPdlebJ59sjnMb_wHsFMH8zHw2h8ag4a5 |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG6MHsSDbyOKugevRbZddtujEQkqcBLDrelrE6NBo0s0_npn9kFAYzxwbqfpYzqdr5n5hpBzI41g3GKukzQ08kZTwbSlImJeaG5iYzF3eDCMe6Podtwez-XCYFglYui0IIrIbTVebvyMrkLiLhDGCHipAd4xTKYCgxsDbF9rg7OPVQx4azizxmFZYAVEKMpUWTx_DbPwPi2wl_6y1vkT1N0itpp8EXny1Jxmpmm_fvA6Lre6bbJZeqjBZaFSO2TFT3bJxmBG7_q-S2roohYMz3skAR_cPHsKPUABXDBA0v_PoOMxWr0MCQtgfUGe60sfHv1H0NGZ3iej7vX9VY-W5RioBRyb0TZ3HE41TmVL6jg0TPuEO5mkqU1SZ4R2zHIdMxelYeSFCLWDO61bnGvfdpHgB2R18jLxhyTgiQNk6cEXtNDbGcMc415LADtGQkOdRNUhKFtylWPJjGcVlpSm1SYp3CRVblKdNGdirwVZx38Ccv6EVZb_kqRFSRPF_5FtVOqgynv_rjDRKRaSJfHREkOfkfXe_aCv-jfDu2NSw6Y8fpA1yGr2NvUn4Adl5jRX9G_p8vdy |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQerBt1ife_Ca2k222eQo1lIfLR5UvIW8FsRSi11R_PVOdrPFKtJDz8mETSaZzGzm-wahUy00J9R4rJPQOHFaYU6UwTwhjiuqmTYeO9wfsN5Dcv3UrrIJJyGt0sfQWUkUUdhqf7jHNqsy4s58FMPhoobojngsFdhbBlH7MvOvYh7F0RpMjXEc6quACPYyFYjnv2FmrqcZ8tI_xrq4gbrrSFffXiaevDTfc900X79oHRea3AZaC_5pdF5uqE205EZbaLU_JXedbKG6d1BLfudtlIIHrocOQw9Qv436nvL_M-o4n6seEsIimF5UIH3x47P7iDoqVzvooXt5f9HDoRgDNhDF5rhNLQWdsky0hGKxJsql1Io0y0yaWc2VJYYqRmySxYnjPFYWTrRqUapc2yac7qLa6HXk9lBEUwtxpQNP0EBvqzWxhDolINTRAhoaKKl0IE1gKvcFM4YyDoSm1SJJv0gyLFIDNadi45KqY56A-KlgmRf_SLKyoImkc2QPq90gw6mfSA9zYlyQlO0vMPQJWrnrdOXt1eDmANV9S5E8SA5RLX97d0fgBOX6uNjm39Sx9hY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-Matched+Matrix+Decomposition+for+Multi-View+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Yuan%2C+Dongbang&rft.au=Gaynanova%2C+Irina&rft.date=2022-10-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=31&rft.issue=4&rft.spage=1114&rft.epage=1126&rft_id=info:doi/10.1080%2F10618600.2022.2067860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2022_2067860 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |