Double-Matched Matrix Decomposition for Multi-View Data

We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 31; no. 4; pp. 1114 - 1126
Main Authors Yuan, Dongbang, Gaynanova, Irina
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.10.2022
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2022.2067860

Cover

Abstract We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge. Supplementary materials for this article are available online.
AbstractList We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge. Supplementary materials for this article are available online.
We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge. Supplementary materials for this article are available online.
Author Yuan, Dongbang
Gaynanova, Irina
Author_xml – sequence: 1
  givenname: Dongbang
  orcidid: 0000-0002-3232-8137
  surname: Yuan
  fullname: Yuan, Dongbang
  organization: Department of Statistics, Texas A&M University
– sequence: 2
  givenname: Irina
  orcidid: 0000-0002-4116-0268
  surname: Gaynanova
  fullname: Gaynanova, Irina
  organization: Department of Statistics, Texas A&M University
BookMark eNqFkE1LAzEQhoNUsK3-BGHB89Z8dJMsXpTWL2jxol7DNB-Yst3UbErtvzel9eJBL_POwPvODM8A9drQWoQuCR4RLPE1wZxIjvGIYkpz4SJPJ6hPKiZKKkjVy332lHvTGRp03RJjTHgt-khMw2bR2HIOSX9YU2SN_quYWh1W69D55ENbuBCL-aZJvnz3dltMIcE5OnXQdPbiqEP09nD_OnkqZy-Pz5O7WakZk6msmGFMV9zVuAZOFhSsYKYWzmnhzEKCoZoBp2bsyNhKScAsMAbMGNjKjCUboqvD3nUMnxvbJbUMm9jmk4oKJrmsqeDZdXNw6Ri6LlqntE-w_z1F8I0iWO1JqR9Sak9KHUnldPUrvY5-BXH3b-72kPNtJrSCbYiNUQl2TYguQqt9p9jfK74BVwWAaw
CitedBy_id crossref_primary_10_1111_biom_13893
crossref_primary_10_1007_s11749_024_00923_z
Cites_doi 10.1007/978-1-4612-4380-9_14
10.1162/REST_a_00043
10.1093/bioinformatics/btw324
10.1214/08-AOAS227
10.1109/JSEN.2010.2049351
10.1186/1471-2105-15-162
10.15252/msb.20178124
10.1111/biom.13010
10.1016/j.jmva.2018.03.008
10.1002/cem.1388
10.1016/j.jmva.2007.06.007
10.1186/1471-2105-10-246
10.1111/biom.13108
10.1080/10618600.2019.1568014
10.3758/s13428-013-0374-6
10.1080/01621459.2018.1543599
10.1214/21-AOAS1466
10.3982/ECTA8968
10.1198/jasa.2011.ap10089
10.1002/cem.1180010107
10.15446/rce.v39n2.52724
10.1093/bioinformatics/btx812
10.1186/s13059-020-02015-1
10.1137/18M1183480
10.1109/TNNLS.2015.2487364
10.1109/JPROC.2015.2474704
10.1137/S1064827500377332
10.1214/12-AOAS597
10.1093/bioinformatics/btw552
10.1111/biom.13141
10.1016/j.csda.2005.09.010
ContentType Journal Article
Copyright 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022
2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Copyright_xml – notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2022
– notice: 2022 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
DBID AAYXX
CITATION
JQ2
DOI 10.1080/10618600.2022.2067860
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 1126
ExternalDocumentID 10_1080_10618600_2022_2067860
2067860
Genre Research Article
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TUS
UT5
UU3
WZA
XWC
ZGOLN
~S~
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c338t-53d33c56f909a61b2ae73d97ffc7fdb8ad2c3a62d4f14e881adb00a033ae5d483
ISSN 1061-8600
IngestDate Wed Aug 13 09:50:37 EDT 2025
Thu Apr 24 23:04:30 EDT 2025
Wed Oct 01 02:49:39 EDT 2025
Mon Oct 20 23:46:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-53d33c56f909a61b2ae73d97ffc7fdb8ad2c3a62d4f14e881adb00a033ae5d483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3232-8137
0000-0002-4116-0268
PQID 2738689276
PQPubID 29738
PageCount 13
ParticipantIDs crossref_primary_10_1080_10618600_2022_2067860
proquest_journals_2738689276
informaworld_taylorfrancis_310_1080_10618600_2022_2067860
crossref_citationtrail_10_1080_10618600_2022_2067860
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-02
PublicationDateYYYYMMDD 2022-10-02
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2022
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
CIT0033
CIT0014
CIT0036
CIT0013
Rosipal R. (CIT0026) 2005
CIT0035
Avron H. (CIT0004) 2013
CIT0016
CIT0015
CIT0037
CIT0019
Löfstedt T. (CIT0017) 2011; 25
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
Efron B. (CIT0007) 2012; 1
Mazumder R. (CIT0018) 2010; 11
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0012
  doi: 10.1007/978-1-4612-4380-9_14
– ident: CIT0022
  doi: 10.1162/REST_a_00043
– ident: CIT0020
  doi: 10.1093/bioinformatics/btw324
– ident: CIT0023
  doi: 10.1214/08-AOAS227
– ident: CIT0013
  doi: 10.1109/JSEN.2010.2049351
– ident: CIT0019
  doi: 10.1186/1471-2105-15-162
– ident: CIT0003
  doi: 10.15252/msb.20178124
– ident: CIT0021
  doi: 10.1111/biom.13010
– ident: CIT0008
  doi: 10.1016/j.jmva.2018.03.008
– volume: 25
  start-page: 441
  year: 2011
  ident: CIT0017
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.1388
– ident: CIT0028
  doi: 10.1016/j.jmva.2007.06.007
– ident: CIT0031
  doi: 10.1186/1471-2105-10-246
– ident: CIT0009
  doi: 10.1111/biom.13108
– ident: CIT0014
  doi: 10.1080/10618600.2019.1568014
– ident: CIT0027
  doi: 10.3758/s13428-013-0374-6
– start-page: 347
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: CIT0004
– ident: CIT0029
  doi: 10.1080/01621459.2018.1543599
– ident: CIT0025
  doi: 10.1214/21-AOAS1466
– ident: CIT0001
  doi: 10.3982/ECTA8968
– ident: CIT0006
  doi: 10.1198/jasa.2011.ap10089
– ident: CIT0033
  doi: 10.1002/cem.1180010107
– ident: CIT0011
  doi: 10.15446/rce.v39n2.52724
– start-page: 34
  volume-title: International Statistical and Optimization Perspectives Workshop” Subspace, Latent Structure and Feature Selection”
  year: 2005
  ident: CIT0026
– ident: CIT0010
– volume: 1
  volume-title: Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction
  year: 2012
  ident: CIT0007
– ident: CIT0032
  doi: 10.1093/bioinformatics/btx812
– ident: CIT0002
  doi: 10.1186/s13059-020-02015-1
– ident: CIT0030
  doi: 10.1137/18M1183480
– ident: CIT0035
  doi: 10.1109/TNNLS.2015.2487364
– ident: CIT0036
  doi: 10.1109/JPROC.2015.2474704
– ident: CIT0015
  doi: 10.1137/S1064827500377332
– ident: CIT0016
  doi: 10.1214/12-AOAS597
– ident: CIT0005
– ident: CIT0034
  doi: 10.1093/bioinformatics/btw552
– ident: CIT0024
  doi: 10.1111/biom.13141
– ident: CIT0037
  doi: 10.1016/j.csda.2005.09.010
– volume: 11
  start-page: 2287
  year: 2010
  ident: CIT0018
  publication-title: The Journal of Machine Learning Research
SSID ssj0001697
Score 2.3604567
Snippet We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1114
SubjectTerms Data integration
Decomposition
Dimension reduction
Iterative algorithms
Iterative methods
Matching
Matrices (mathematics)
Matrix factorization
MicroRNAs
Multi-block data
Optimization
Principal component analysis
Professional soccer
Soccer
Title Double-Matched Matrix Decomposition for Multi-View Data
URI https://www.tandfonline.com/doi/abs/10.1080/10618600.2022.2067860
https://www.proquest.com/docview/2738689276
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AMVHM
  dateStart: 20121001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEG8QXvDBKGpA0eyDrz13295u-2hEQ0yOF4HwtunXGhKykGNJwL_emX7s3cFFxJfNZe_6cZ3pzHQ6vxlCPhllJOMWsU7KUOGNppJpS6VgXmpuamMROzw7qg9PxI-z6dk9dMlgJvb3WlzJ_1AV3gFdESX7BMqOncIL-Az0hSdQGJ7_RGOwfs2FpzONS4_xEsP8_BZECMaJp2CsEEYYULb0FDEqBxGLts4gtaHAQ3YOokM9ZLOOuEl8H1I6j2LiJrpODy77X0Yn_YeBPPqu11hpNUifearOnR0LcCbFa_ElXyMeFqmsy3ht4rN8bICsEYGZBWgS4-fL3oEgDUGOiiXNimiltVI7hjnieDjcBCczwbTysi4Xaipfzd_TXmNMYZWSneZuWuymTd08I1sMxD7W9uDl0aiqq1R9J__TDPGS5ee1s1kxXlZS2z5Q5cE-OX5JXiQ6Fl8il7wiG77fIc9nY1be6x2y_XOk4mvSrDJPEZmnWGGeAkYuFsxTIPO8ISffvx1_PaSpiga1nMuBTrnjsBnrTpVK15Vh2jfcqabrbNM5I7VjluuaOdFVwktZaQeiWJecaz91QvK3ZLO_7P0uKXjjKik8mPAWfu2MYY5xrxWcUY2CL_aIyMvT2pRiHiudXLR_Jc4emYzNrmKOlccaqOW1b4fg3OpiJZqWP9J2PxOqTVv5ukV8Wi0VsMi7p87lPdlebJ59sjnMb_wHsFMH8zHw2h8ag4a5
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG6MHsSDbyOKugevRbZddtujEQkqcBLDrelrE6NBo0s0_npn9kFAYzxwbqfpYzqdr5n5hpBzI41g3GKukzQ08kZTwbSlImJeaG5iYzF3eDCMe6Podtwez-XCYFglYui0IIrIbTVebvyMrkLiLhDGCHipAd4xTKYCgxsDbF9rg7OPVQx4azizxmFZYAVEKMpUWTx_DbPwPi2wl_6y1vkT1N0itpp8EXny1Jxmpmm_fvA6Lre6bbJZeqjBZaFSO2TFT3bJxmBG7_q-S2roohYMz3skAR_cPHsKPUABXDBA0v_PoOMxWr0MCQtgfUGe60sfHv1H0NGZ3iej7vX9VY-W5RioBRyb0TZ3HE41TmVL6jg0TPuEO5mkqU1SZ4R2zHIdMxelYeSFCLWDO61bnGvfdpHgB2R18jLxhyTgiQNk6cEXtNDbGcMc415LADtGQkOdRNUhKFtylWPJjGcVlpSm1SYp3CRVblKdNGdirwVZx38Ccv6EVZb_kqRFSRPF_5FtVOqgynv_rjDRKRaSJfHREkOfkfXe_aCv-jfDu2NSw6Y8fpA1yGr2NvUn4Adl5jRX9G_p8vdy
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SQerBt1ife_Ca2k222eQo1lIfLR5UvIW8FsRSi11R_PVOdrPFKtJDz8mETSaZzGzm-wahUy00J9R4rJPQOHFaYU6UwTwhjiuqmTYeO9wfsN5Dcv3UrrIJJyGt0sfQWUkUUdhqf7jHNqsy4s58FMPhoobojngsFdhbBlH7MvOvYh7F0RpMjXEc6quACPYyFYjnv2FmrqcZ8tI_xrq4gbrrSFffXiaevDTfc900X79oHRea3AZaC_5pdF5uqE205EZbaLU_JXedbKG6d1BLfudtlIIHrocOQw9Qv436nvL_M-o4n6seEsIimF5UIH3x47P7iDoqVzvooXt5f9HDoRgDNhDF5rhNLQWdsky0hGKxJsql1Io0y0yaWc2VJYYqRmySxYnjPFYWTrRqUapc2yac7qLa6HXk9lBEUwtxpQNP0EBvqzWxhDolINTRAhoaKKl0IE1gKvcFM4YyDoSm1SJJv0gyLFIDNadi45KqY56A-KlgmRf_SLKyoImkc2QPq90gw6mfSA9zYlyQlO0vMPQJWrnrdOXt1eDmANV9S5E8SA5RLX97d0fgBOX6uNjm39Sx9hY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Double-Matched+Matrix+Decomposition+for+Multi-View+Data&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Yuan%2C+Dongbang&rft.au=Gaynanova%2C+Irina&rft.date=2022-10-02&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=31&rft.issue=4&rft.spage=1114&rft.epage=1126&rft_id=info:doi/10.1080%2F10618600.2022.2067860&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10618600_2022_2067860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon