Double-Matched Matrix Decomposition for Multi-View Data
We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data...
Saved in:
| Published in | Journal of computational and graphical statistics Vol. 31; no. 4; pp. 1114 - 1126 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
02.10.2022
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1061-8600 1537-2715 |
| DOI | 10.1080/10618600.2022.2067860 |
Cover
| Summary: | We consider the problem of extracting joint and individual signals from multi-view data, that is, data collected from different sources on matched samples. While existing methods for multi-view data decomposition explore single matching of data by samples, we focus on double-matched multi-view data (matched by both samples and source features). Our motivating example is the miRNA data collected from both primary tumor and normal tissues of the same subjects; the measurements from two tissues are thus matched both by subjects and by miRNAs. Our proposed double-matched matrix decomposition allows us to simultaneously extract joint and individual signals across subjects, as well as joint and individual signals across miRNAs. Our estimation approach takes advantage of double-matching by formulating a new type of optimization problem with explicit row space and column space constraints, for which we develop an efficient iterative algorithm. Numerical studies indicate that taking advantage of double-matching leads to superior signal estimation performance compared to existing multi-view data decomposition based on single-matching. We apply our method to miRNA data as well as data from the English Premier League soccer matches and find joint and individual multi-view signals that align with domain-specific knowledge.
Supplementary materials
for this article are available online. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1061-8600 1537-2715 |
| DOI: | 10.1080/10618600.2022.2067860 |