Homogenization of a monotone problem in a domain with oscillating boundary
We study the asymptotic behaviour of the following nonlinear problem: $$\{ \begin{array}{ll} -{\rm div}(a( Du_h))+ \vert u_h\vert^{p-2}u_h =f \quad\hbox{in }\Omega_h, a( Du_h)\cdot\nu = 0 \quad\hbox{on }\partial\Omega_h, \end{array} .$$ in a domain Ωh of $\mathbb{R}^n$ whose boundary ∂Ωh contains an...
Saved in:
Published in | ESAIM: Mathematical Modelling and Numerical Analysis Vol. 33; no. 5; pp. 1057 - 1070 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Les Ulis
EDP Sciences
01.09.1999
|
Subjects | |
Online Access | Get full text |
ISSN | 0764-583X 1290-3841 |
DOI | 10.1051/m2an:1999134 |
Cover
Summary: | We study the asymptotic behaviour of the following nonlinear problem: $$\{ \begin{array}{ll} -{\rm div}(a( Du_h))+ \vert u_h\vert^{p-2}u_h =f \quad\hbox{in }\Omega_h, a( Du_h)\cdot\nu = 0 \quad\hbox{on }\partial\Omega_h, \end{array} .$$ in a domain Ωh of $\mathbb{R}^n$ whose boundary ∂Ωh contains an oscillating part with respect to h when h tends to ∞. The oscillating boundary is defined by a set of cylinders with axis 0xn that are h-1-periodically distributed. We prove that the limit problem in the domain corresponding to the oscillating boundary identifies with a diffusion operator with respect to xn coupled with an algebraic problem for the limit fluxes.
Nous étudions le comportement asymptotique du problème non linéaire monotone $$\{ \begin{array}{ll} -{\rm div}(a( Du_h))+ \vert u_h\vert^{p-2}u_h =f \quad\hbox{dans }\Omega_h, a( Du_h)\cdot\nu = 0 \quad\hbox{sur }\partial\Omega_h, \end{array} .$$ posé sur un ouvert Ωh de $\mathbb{R}^n$ dont une partie de la frontière oscille avec h lorsque h tend vers ∞. Cette partie oscillante est constituée d'un ensemble de cylindres d'axe Oxn distribués avec la période h-1. Nous démontrons que dans le domaine correspondant à la partie oscillante, le problème limite couple un problème de diffusion en xn et un problème algébrique pour les flux limites. |
---|---|
Bibliography: | istex:474859B0F2AE81747C29EA90164D2D9429DC2DFF PII:S0764583X9900134X ark:/67375/80W-7D04LHMK-L publisher-ID:m2an867 |
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an:1999134 |