Phenotypic profiling based on body fluid traces discovered at the scene of crime: Raman spectroscopy of urine stains for race differentiation
Modern criminal investigations heavily rely on trace bodily fluid evidence as a rich source of DNA. DNA profiling of such evidence can result in the identification of an individual if a matching DNA profile is available. Alternatively, phenotypic profiling based on the analysis of body fluid traces...
Saved in:
Published in | Analyst (London) Vol. 149; no. 2; pp. 581 - 59 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
07.10.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0003-2654 1364-5528 1364-5528 |
DOI | 10.1039/d4an00938j |
Cover
Summary: | Modern criminal investigations heavily rely on trace bodily fluid evidence as a rich source of DNA. DNA profiling of such evidence can result in the identification of an individual if a matching DNA profile is available. Alternatively, phenotypic profiling based on the analysis of body fluid traces can significantly narrow down the pool of suspects in a criminal investigation. Urine stain is a frequently encountered specimen at the scene of crime. Raman spectroscopy offers great potential as a universal confirmatory method for the identification of all main body fluids, including urine. In this proof-of-concept study, Raman spectroscopy combined with advanced statistics was used for race differentiation based on the analysis of urine stains. Specifically, a Random Forest (RF) model was built, which allowed for differentiating Caucasian (CA) and African American (AA) descent donors with 90% accuracy based on Raman spectra of dried urine samples. Raman spectra were collected from samples of 28 donors varying in age and sex. This novel technology offers great potential as a universal forensic tool for phenotypic profiling of a potential suspect immediately at the scene of a crime, providing invaluable information for a criminal investigation.
Raman spectroscopy and machine learning were combined in this proof-of-concept study for the race identification of a urine stain donor with 90% accuracy. This method offers a powerful new tool for immediate suspect profiling at the crime scene. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0003-2654 1364-5528 1364-5528 |
DOI: | 10.1039/d4an00938j |