A New Multiobjective Time-Cost Trade-Off for Scheduling Maintenance Problem in a Series-Parallel System

In this paper, a modified model of Nondominated Sorting Genetic Algorithm 2 (NSGA-II), which is one of the Multiobjective Evolutionary Algorithms, is proposed. This algorithm is a new model designed to make a trade-off between minimizing the cost of preventive maintenance (PM) and minimizing the tim...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2021; pp. 1 - 13
Main Authors Tavassoli, Leyla Sadat, Massah, Reza, Montazeri, Arsalan, Mirmozaffari, Mirpouya, Jiang, Guang-Jun, Chen, Hong-Xia
Format Journal Article
LanguageEnglish
Published New York Hindawi 2021
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2021/5583125

Cover

More Information
Summary:In this paper, a modified model of Nondominated Sorting Genetic Algorithm 2 (NSGA-II), which is one of the Multiobjective Evolutionary Algorithms, is proposed. This algorithm is a new model designed to make a trade-off between minimizing the cost of preventive maintenance (PM) and minimizing the time taken to perform this maintenance for a series-parallel system. In this model, the limitations of labor and equipment of the maintenance team and the effects of maintenance issues on manufacturing problems are also considered. In the mathematical model, finding the appropriate objective functions for the maintenance scheduling problem requires all maintenance costs and failure rates to be integrated. Additionally, the effects of production interruption during preventive maintenance are added to objective functions. Furthermore, to make a better performance compared with a regular NSGA-II algorithm, we proposed a modified algorithm with a repository to keep more unacceptable solutions. These solutions can be modified and changed with the proposed mutation algorithm to acceptable solutions. In this algorithm, modified operators, such as simulated binary crossover and polynomial mutation, will improve the algorithm to generate convergence and uniformly distributed solutions with more diverse solutions. Finally, by comparing the experimental solutions with the solutions of two Strength Pareto Evolutionary Algorithm 2 (SPEA2) and regular NSGA-II, MNSGA-II generates more efficient and uniform solutions than the other two algorithms.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1026-7077
1563-5147
1563-5147
DOI:10.1155/2021/5583125