A Reference-Waveform Oversampling Technique in a Fractional-N ADPLL

This article presents a low-power fractional-<inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> all-digital phase-locked loop (ADPLL) employing a reference-waveform oversampling (ROS) phase detector (PD) that increases its effective rate fo...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of solid-state circuits Vol. 56; no. 11; pp. 3445 - 3457
Main Authors Du, Jianglin, Siriburanon, Teerachot, Hu, Yizhe, Govindaraj, Vivek, Staszewski, Robert Bogdan
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9200
1558-173X
1558-173X
DOI10.1109/JSSC.2021.3101046

Cover

More Information
Summary:This article presents a low-power fractional-<inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> all-digital phase-locked loop (ADPLL) employing a reference-waveform oversampling (ROS) phase detector (PD) that increases its effective rate four times, thus leading to lower jitter and settling time. The proposed ROS-PD adopts a bottom-plate sampling with a voltage zero-forcing technique, which yields high power efficiency and supports fractional phase compensation in the voltage domain through a programmable DAC. The PD output is then amplified by a low-noise gated amplifier and digitized by a low-power successive approximation register analog-to-digital converter (SAR-ADC). Leveraging the benefits of digital architecture, gain mismatches from the waveform estimator are calibrated by means of an LMS algorithm, consequently lowering fractional spurs. The proposed ADPLL is implemented in TSMC 28-nm LP CMOS. The prototype generates a 2.0-2.3-GHz carrier with an rms jitter of 414 fs while consuming only 1.15 mW. This corresponds to a state-of-the-art ADPLL FoM jitter of −247 dB in a fractional-<inline-formula> <tex-math notation="LaTeX">{N} </tex-math></inline-formula> mode. Due to the wide (largely linear) monotonic range and <inline-formula> <tex-math notation="LaTeX">4\times </tex-math></inline-formula> oversampling rate from a 48-MHz reference, without any additional circuitry, the proposed ADPLL can settle within <inline-formula> <tex-math notation="LaTeX">3~\mu \text{s} </tex-math></inline-formula> in face of a 70-MHz frequency step.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9200
1558-173X
1558-173X
DOI:10.1109/JSSC.2021.3101046