Nonlinear input/output analysis: application to boundary layer transition
We extend linear input/output (resolvent) analysis to take into account nonlinear triadic interactions by considering a finite number of harmonics in the frequency domain using the harmonic balance method. Forcing mechanisms that maximise the drag are calculated using a gradient-based ascent algorit...
        Saved in:
      
    
          | Published in | Journal of fluid mechanics Vol. 911 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cambridge, UK
          Cambridge University Press
    
        25.03.2021
     Cambridge University Press (CUP)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-1120 1469-7645  | 
| DOI | 10.1017/jfm.2020.982 | 
Cover
| Summary: | We extend linear input/output (resolvent) analysis to take into account nonlinear triadic interactions by considering a finite number of harmonics in the frequency domain using the harmonic balance method. Forcing mechanisms that maximise the drag are calculated using a gradient-based ascent algorithm. By including nonlinearity in the analysis, the proposed frequency-domain framework identifies the worst-case disturbances for laminar-turbulent transition. We demonstrate the framework on a flat-plate boundary layer by considering three-dimensional spanwise-periodic perturbations triggered by a few optimal forcing modes of finite amplitude. Two types of volumetric forcing are considered, one corresponding to a single frequency/spanwise wavenumber pair, and a multi-harmonic where a harmonic frequency and wavenumber are also added. Depending on the forcing strategy, we recover a range of transition scenarios associated with $K$-type and $H$-type mechanisms, including oblique and planar Tollmien–Schlichting waves, streaks and their breakdown. We show that nonlinearity plays a critical role in optimising growth by combining and redistributing energy between the linear mechanisms and the higher perturbation harmonics. With a very limited range of frequencies and wavenumbers, the calculations appear to reach the early stages of the turbulent regime through the generation and breakdown of hairpin and quasi-streamwise staggered vortices. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
| ISSN: | 0022-1120 1469-7645  | 
| DOI: | 10.1017/jfm.2020.982 |