Effects of samarium addition on as-cast microstructure, grain refinement and mechanical properties of Mg-6Zn-0.4Zr magnesium alloy

In this paper, the microstructural evolution, grain refinement and mechanical properties of as-cast Mg-6Zn-0.4Zr alloys with varying Sm contents(0, 2 wt.%, 4 wt.% and 6 wt.%) were investigated by using an optical microscope(OM), a scanning electron microscope(SEM) equipped with energy dispersive spe...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 35; no. 5; pp. 494 - 502
Main Author 张玉 黄晓锋 李雅 马振铎 马颖 郝远
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2017
Subjects
Online AccessGet full text
ISSN1002-0721
2509-4963
DOI10.1016/S1002-0721(17)60939-6

Cover

More Information
Summary:In this paper, the microstructural evolution, grain refinement and mechanical properties of as-cast Mg-6Zn-0.4Zr alloys with varying Sm contents(0, 2 wt.%, 4 wt.% and 6 wt.%) were investigated by using an optical microscope(OM), a scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS), an X-ray diffractometer(XRD) and mechanical tests at room temperature, respectively. The experimental results indicated that the addition of Sm could obviously refine the as-cast grains, modify the eutectic morphology and affect the mechanical properties of the alloys. The main phases in Mg-6Zn-xSm-0.4Zr alloys included matrix α-Mg, Mg2Zn3, Mg(41)Sm5 and MgZ nS m. With Sm content increasing to 4%, the MgZ nS m phase was created, meanwhile, the morphology of some eutectic phases revealed apparently lamellar structure, which had a bad effect on the mechanical properties. In addition, the maximum values of ultimate tensile strength(UTS, 214 MPa) and elongation(EL, 7.42%) were simultaneously obtained from the alloy with 2% Sm. However, Sm addition had no obvious effects on the fracture behavior of the alloys, namely, the fracture pattern of Mg-6Zn-0.4Zr alloy belonged to inter-granular and brittle modes while the fracture regimes of all the Sm-containing alloys were dominated by the mixture of inter-granular and trans-granular modes.
Bibliography:ZHANG Yu, HUANG Xiaofeng , LI Ya , MA Zhenduo, MA Ying , HAO Yuan (State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China)
11-2788/TF
In this paper, the microstructural evolution, grain refinement and mechanical properties of as-cast Mg-6Zn-0.4Zr alloys with varying Sm contents(0, 2 wt.%, 4 wt.% and 6 wt.%) were investigated by using an optical microscope(OM), a scanning electron microscope(SEM) equipped with energy dispersive spectroscope(EDS), an X-ray diffractometer(XRD) and mechanical tests at room temperature, respectively. The experimental results indicated that the addition of Sm could obviously refine the as-cast grains, modify the eutectic morphology and affect the mechanical properties of the alloys. The main phases in Mg-6Zn-xSm-0.4Zr alloys included matrix α-Mg, Mg2Zn3, Mg(41)Sm5 and MgZ nS m. With Sm content increasing to 4%, the MgZ nS m phase was created, meanwhile, the morphology of some eutectic phases revealed apparently lamellar structure, which had a bad effect on the mechanical properties. In addition, the maximum values of ultimate tensile strength(UTS, 214 MPa) and elongation(EL, 7.42%) were simultaneously obtained from the alloy with 2% Sm. However, Sm addition had no obvious effects on the fracture behavior of the alloys, namely, the fracture pattern of Mg-6Zn-0.4Zr alloy belonged to inter-granular and brittle modes while the fracture regimes of all the Sm-containing alloys were dominated by the mixture of inter-granular and trans-granular modes.
refinement magnesium eutectic tensile lamellar ultimate granular grains precipitate dispersive
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(17)60939-6