A 4.06 mW 10-bit 150 MS/s SAR ADC With 1.5-bit/cycle Operation for Medical Imaging Applications
This paper reports a 10-bit 150 MS/s successive approximation register analog-to-digital converter with binary-scaled redundancy-facilitated error correction technique. The proposed 1.5-bit/cycle technique with built-in capacitive digital-to-analog converter (CDAC) redundancy, corrects multiple erro...
Saved in:
Published in | IEEE sensors journal Vol. 18; no. 11; pp. 4553 - 4560 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1530-437X 1558-1748 |
DOI | 10.1109/JSEN.2018.2825400 |
Cover
Summary: | This paper reports a 10-bit 150 MS/s successive approximation register analog-to-digital converter with binary-scaled redundancy-facilitated error correction technique. The proposed 1.5-bit/cycle technique with built-in capacitive digital-to-analog converter (CDAC) redundancy, corrects multiple erroneous decisions in a total of nine conversion cycles. The proposed binary-scaled redundancy provides a 12.5% error tolerance range for the incomplete CDAC voltage settling. The digital error-correction logic circuit presented uses a bit-overlap-and-add technique. The prototype chip was fabricated in 65-nm CMOS technology and occupies chip area of 0.038 mm 2 . It consumes 4.06 mW from a 1.2 V supply, achieving the Nyquist signal-to-noise-and-distortion ratio of 57.81 dB and the effective number of bits of 9.31-bit at an operating frequency of 150 MS/s, corresponding to the figure-of-merit of 42.6 fJ/ conversion-step. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1530-437X 1558-1748 |
DOI: | 10.1109/JSEN.2018.2825400 |