Structure and properties of cerium zirconium mixed oxide prepared under different precipitate aging processes

Oriented attachment and Ostwald ripening are two aging mechanisms of precipitation particles which may result in differ- ent crystallization mechanism of precipitates during the aging process. In this work, the effects of different aging process on the structure and properties of cerium zirconium mi...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 34; no. 7; pp. 695 - 703
Main Author 王琦 岳梅 钟强 崔梅生 黄小卫 侯永可 王磊 杨宇轩 龙志奇 冯宗玉
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.07.2016
Subjects
Online AccessGet full text
ISSN1002-0721
2509-4963
DOI10.1016/S1002-0721(16)60081-9

Cover

More Information
Summary:Oriented attachment and Ostwald ripening are two aging mechanisms of precipitation particles which may result in differ- ent crystallization mechanism of precipitates during the aging process. In this work, the effects of different aging process on the structure and properties of cerium zirconium mixed oxides were investigated. The results indicated that the mixed structure of 11.48% CeO2 phase and 88.52% Ce0.26Zr0.62(LaPr)0.1202 solid solution phase were obtained under oriented attachment aging process. The rod-like CeO2 phase coexisted with spherical Ce0.26Zr0.62(LaPr)0.1202 solid solution phase, which improved the surface area (64 m2/g) and pore volume (0.32 mL/g) of cerium zirconium mixed oxides after 1000 ℃ 4 h thermal treatment. However, through controlling the aging process, the Ce0.35Zr0.55(LaPr)0.1002 solid solution with homogenous phase structure was generated by Ostwald ripening ag- ing process, exhibiting higher oxygen storage capacity (501 μmol O2/g) and H2 consumption per gram (1378.3 μmol H2/g).
Bibliography:cerium zirconium mixed oxides; Ostwald ripening; oriented attachment; co-precipitation; rare earths
11-2788/TF
Oriented attachment and Ostwald ripening are two aging mechanisms of precipitation particles which may result in differ- ent crystallization mechanism of precipitates during the aging process. In this work, the effects of different aging process on the structure and properties of cerium zirconium mixed oxides were investigated. The results indicated that the mixed structure of 11.48% CeO2 phase and 88.52% Ce0.26Zr0.62(LaPr)0.1202 solid solution phase were obtained under oriented attachment aging process. The rod-like CeO2 phase coexisted with spherical Ce0.26Zr0.62(LaPr)0.1202 solid solution phase, which improved the surface area (64 m2/g) and pore volume (0.32 mL/g) of cerium zirconium mixed oxides after 1000 ℃ 4 h thermal treatment. However, through controlling the aging process, the Ce0.35Zr0.55(LaPr)0.1002 solid solution with homogenous phase structure was generated by Ostwald ripening ag- ing process, exhibiting higher oxygen storage capacity (501 μmol O2/g) and H2 consumption per gram (1378.3 μmol H2/g).
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(16)60081-9