Structure and properties of cerium zirconium mixed oxide prepared under different precipitate aging processes
Oriented attachment and Ostwald ripening are two aging mechanisms of precipitation particles which may result in differ- ent crystallization mechanism of precipitates during the aging process. In this work, the effects of different aging process on the structure and properties of cerium zirconium mi...
Saved in:
Published in | Journal of rare earths Vol. 34; no. 7; pp. 695 - 703 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.07.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0721 2509-4963 |
DOI | 10.1016/S1002-0721(16)60081-9 |
Cover
Summary: | Oriented attachment and Ostwald ripening are two aging mechanisms of precipitation particles which may result in differ- ent crystallization mechanism of precipitates during the aging process. In this work, the effects of different aging process on the structure and properties of cerium zirconium mixed oxides were investigated. The results indicated that the mixed structure of 11.48% CeO2 phase and 88.52% Ce0.26Zr0.62(LaPr)0.1202 solid solution phase were obtained under oriented attachment aging process. The rod-like CeO2 phase coexisted with spherical Ce0.26Zr0.62(LaPr)0.1202 solid solution phase, which improved the surface area (64 m2/g) and pore volume (0.32 mL/g) of cerium zirconium mixed oxides after 1000 ℃ 4 h thermal treatment. However, through controlling the aging process, the Ce0.35Zr0.55(LaPr)0.1002 solid solution with homogenous phase structure was generated by Ostwald ripening ag- ing process, exhibiting higher oxygen storage capacity (501 μmol O2/g) and H2 consumption per gram (1378.3 μmol H2/g). |
---|---|
Bibliography: | cerium zirconium mixed oxides; Ostwald ripening; oriented attachment; co-precipitation; rare earths 11-2788/TF Oriented attachment and Ostwald ripening are two aging mechanisms of precipitation particles which may result in differ- ent crystallization mechanism of precipitates during the aging process. In this work, the effects of different aging process on the structure and properties of cerium zirconium mixed oxides were investigated. The results indicated that the mixed structure of 11.48% CeO2 phase and 88.52% Ce0.26Zr0.62(LaPr)0.1202 solid solution phase were obtained under oriented attachment aging process. The rod-like CeO2 phase coexisted with spherical Ce0.26Zr0.62(LaPr)0.1202 solid solution phase, which improved the surface area (64 m2/g) and pore volume (0.32 mL/g) of cerium zirconium mixed oxides after 1000 ℃ 4 h thermal treatment. However, through controlling the aging process, the Ce0.35Zr0.55(LaPr)0.1002 solid solution with homogenous phase structure was generated by Ostwald ripening ag- ing process, exhibiting higher oxygen storage capacity (501 μmol O2/g) and H2 consumption per gram (1378.3 μmol H2/g). |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(16)60081-9 |