Preparation and luminescence properties of a white emitting long afterglow luminous fiber based on FRET

A ternary luminous fiber with white light emitting was prepared. The fiber combined emission from Sr+2ZnSi_2O_7:Eu^2+,Dy3, SrAl_2O_4:Eu^2+,Dy^3+ and Rhodamine B in the ternary system. According to fluorescence resonance energy transfer(FRET), Rhodamine B was applied to generate red emission. A novel...

Full description

Saved in:
Bibliographic Details
Published inJournal of rare earths Vol. 34; no. 4; pp. 374 - 380
Main Author 晋阳 白艳梅 葛明桥
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2016
Subjects
Online AccessGet full text
ISSN1002-0721
2509-4963
DOI10.1016/S1002-0721(16)60036-4

Cover

More Information
Summary:A ternary luminous fiber with white light emitting was prepared. The fiber combined emission from Sr+2ZnSi_2O_7:Eu^2+,Dy3, SrAl_2O_4:Eu^2+,Dy^3+ and Rhodamine B in the ternary system. According to fluorescence resonance energy transfer(FRET), Rhodamine B was applied to generate red emission. A novel FRET system among Sr_2ZnS i_2O_7:Eu^2+,Dy^3+, SrAl_2O_4:Eu^2+,Dy^3+ and Rhodamine B was introduced. The anticipated luminescence properties could be realized precisely by adjusting the ratio. The summaries of the main test results such as X-ray diffraction, CIE chromaticity diagram and fluorescence spectrophotometer were given, and an afterglow brightness tester was used as a microcomputer thermo-luminescent dosimeter. The brief outlines about some phenomena aspects and detailed physical descriptions as well as manuals were available. From the XRD analysis the result suggested that the lattice structure was not destroyed when milling and spinning. The sample of 6:4:0.1 with white light emitting showed good physical, mechanical and luminous performance.
Bibliography:A ternary luminous fiber with white light emitting was prepared. The fiber combined emission from Sr+2ZnSi_2O_7:Eu^2+,Dy3, SrAl_2O_4:Eu^2+,Dy^3+ and Rhodamine B in the ternary system. According to fluorescence resonance energy transfer(FRET), Rhodamine B was applied to generate red emission. A novel FRET system among Sr_2ZnS i_2O_7:Eu^2+,Dy^3+, SrAl_2O_4:Eu^2+,Dy^3+ and Rhodamine B was introduced. The anticipated luminescence properties could be realized precisely by adjusting the ratio. The summaries of the main test results such as X-ray diffraction, CIE chromaticity diagram and fluorescence spectrophotometer were given, and an afterglow brightness tester was used as a microcomputer thermo-luminescent dosimeter. The brief outlines about some phenomena aspects and detailed physical descriptions as well as manuals were available. From the XRD analysis the result suggested that the lattice structure was not destroyed when milling and spinning. The sample of 6:4:0.1 with white light emitting showed good physical, mechanical and luminous performance.
JIN Yang, BAI Yanmei , GE Mingqiao (School of Textile and Clothing, Jiangnan University, Wuxi 214122, China)
11-2788/TF
luminous fibers afterglow FRET white light rare earth material
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(16)60036-4