VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning
Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most pro...
Saved in:
Published in | IEEE transactions on vehicular technology Vol. 74; no. 2; pp. 3311 - 3326 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0018-9545 1939-9359 |
DOI | 10.1109/TVT.2024.3479780 |
Cover
Abstract | Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most promising techniques for training global machine learning models while preserving data privacy of vehicles and optimizing communications resource usage. In this article, we propose vehicular radio environment map federated learning (VREM-FL), a computation-scheduling co-design for vehicular federated learning that combines mobility of vehicles with 5G radio environment maps. VREM-FL jointly optimizes learning performance of the global model and wisely allocates communication and computation resources. This is achieved by orchestrating local computations at the vehicles in conjunction with transmission of their local models in an adaptive and predictive fashion, by exploiting radio channel maps. The proposed algorithm can be tuned to trade training time for radio resource usage. Experimental results demonstrate that VREM-FL outperforms literature benchmarks for both a linear regression model (learning time reduced by 28%) and a deep neural network for semantic image segmentation (doubling the number of model updates within the same time window). |
---|---|
AbstractList | Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most promising techniques for training global machine learning models while preserving data privacy of vehicles and optimizing communications resource usage. In this article, we propose vehicular radio environment map federated learning (VREM-FL), a computation-scheduling co-design for vehicular federated learning that combines mobility of vehicles with 5G radio environment maps. VREM-FL jointly optimizes learning performance of the global model and wisely allocates communication and computation resources. This is achieved by orchestrating local computations at the vehicles in conjunction with transmission of their local models in an adaptive and predictive fashion, by exploiting radio channel maps. The proposed algorithm can be tuned to trade training time for radio resource usage. Experimental results demonstrate that VREM-FL outperforms literature benchmarks for both a linear regression model (learning time reduced by 28%) and a deep neural network for semantic image segmentation (doubling the number of model updates within the same time window). |
Author | Ballotta, Luca Schenato, Luca Rossi, Michele Perin, Giovanni Piro, Giuseppe Fabbro, Nicolo Dal |
Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0002-6521-7142 surname: Ballotta fullname: Ballotta, Luca email: l.ballotta@tudelft.nl organization: Delft Center for Systems and Control, Delft University of Technology, Delft, CD, The Netherlands – sequence: 2 givenname: Nicolo Dal orcidid: 0000-0002-5325-2792 surname: Fabbro fullname: Fabbro, Nicolo Dal email: ndf96@seas.upenn.edu organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PD, USA – sequence: 3 givenname: Giovanni orcidid: 0000-0002-7333-3004 surname: Perin fullname: Perin, Giovanni email: giovanni.perin.1@unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 4 givenname: Luca orcidid: 0000-0003-2544-2553 surname: Schenato fullname: Schenato, Luca email: l.schenato@unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 5 givenname: Michele orcidid: 0000-0003-1121-324X surname: Rossi fullname: Rossi, Michele email: michele.rossi@unipd.it organization: Department of Information Engineering, University of Padova, Padova, Italy – sequence: 6 givenname: Giuseppe orcidid: 0000-0003-3783-5565 surname: Piro fullname: Piro, Giuseppe email: giuseppe.piro@poliba.it organization: Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy |
BookMark | eNp9kM1LwzAYxoMouE3vHjwUPGcmS9o03sbcVNgQdA48lTR5s2V07UxbZP-9Gd1BPHh6eV6eD_j10XlZlYDQDSVDSom8X66WwxEZ8SHjQoqUnKEelUxiyWJ5jnqE0BTLmMeXqF_X2yA5l7SHPldv0wWezR-iRZW7wjUHPP5WHqJJtdu3jWpcVeJ3vQHTFq5chzd-hNqty8hWPlrBxum2UD6agQGvGjDRHJQvg_UKXVhV1HB9ugP0MZsuJ894_vr0MhnPsWaMNzjOjTI6h1RYwaW23FiIrbJxLkWSWk1G0ppQrrVVAoJiimmwOlVgJNXABuiu69376quFusm2VevLMJkxmiQpZVSK4CKdS_uqrj3YbO_dTvlDRkl2BJgFgNkRYHYCGCLJn4h2HZDGK1f8F7ztgg4Afu0IGguasB_DsYHK |
CODEN | ITVTAB |
CitedBy_id | crossref_primary_10_1109_TVT_2024_3479780 |
Cites_doi | 10.1109/MNET.011.2000430 10.1109/TWC.2020.3024629 10.1109/SPAWC51858.2021.9593130 10.1109/TVT.2023.3318080 10.1109/TIV.2023.3332675 10.1109/ICCWorkshops57953.2023.10283527 10.1109/ICPADS51040.2020.00083 10.1016/j.comnet.2018.10.012 10.1109/TVT.2020.3011147 10.1109/TCOMM.2019.2944169 10.1109/JSAC.2023.3273700 10.1109/JSAC.2023.3242727 10.1109/TITS.2014.2345663 10.1109/TVT.2021.3077893 10.1016/j.automatica.2023.111460 10.1109/MeditCom55741.2022.9928621 10.1109/TWC.2020.3042530 10.1109/TMC.2023.3283295 10.1109/ACCESS.2020.2968399 10.1109/TWC.2015.2481879 10.1109/COMST.2021.3089688 10.1109/TVT.2021.3049894 10.1109/MVT.2020.3019650 10.1109/TCCN.2017.2653189 10.1109/TMC.2022.3148208 10.1109/TVT.2020.3015268 10.1109/TITS.2020.3015210 10.1109/BigDataService52369.2021.00018 10.1109/TVT.2024.3479780 10.1109/TVT.2016.2538461 10.1109/TMC.2022.3222763 10.1109/LCN52139.2021.9524974 10.1109/CDC45484.2021.9683685 10.1109/TWC.2022.3221770 10.1109/LWC.2022.3149783 10.1109/ICC40277.2020.9149138 10.1109/TVT.2021.3098170 10.1109/TWC.2021.3052681 10.1109/TITS.2021.3099597 10.1016/j.future.2021.11.020 10.1016/j.comcom.2021.01.012 10.1109/LWC.2021.3132458 10.23919/SoftCOM55329.2022.9911517 10.1109/LWC.2022.3141792 10.1109/JSAC.2021.3118436 10.1109/GLOCOMW.2013.6855723 10.1109/JIOT.2020.3036157 10.1109/MITS.2018.2806632 10.1109/MWC.2019.1800146 10.1109/TITS.2021.3099368 10.1109/ICCV.2019.00140 10.1109/OJCS.2020.2992630 10.1109/JIOT.2018.2872122 10.1109/ICC45041.2023.10279773 10.1109/CVPRW.2018.00141 10.23919/JCC.2023.03.001 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
DOI | 10.1109/TVT.2024.3479780 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access (Activated by CARLI) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1939-9359 |
EndPage | 3326 |
ExternalDocumentID | 10_1109_TVT_2024_3479780 10715716 |
Genre | orig-research |
GrantInformation_xml | – fundername: European Union – fundername: EU Project ROBUST-6G grantid: 101139068 – fundername: Italian National Recovery and Resilience Plan of NextGenerationEU – fundername: PRIN grantid: 2017NS9FEY – fundername: Italian Ministry of Education, University and Research – fundername: 2017NS9FEY "Realtime Control of 5G Wireless Networks" – fundername: partnership on "Telecommunications of the Future" |
GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAIKC AAJGR AAMNW AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD ESBDL HZ~ H~9 IAAWW IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SP 8FD FR3 KR7 L7M |
ID | FETCH-LOGICAL-c334t-5bdadcbe87f749cf4dfe5faf5b9768fc029fdedeccfa7e0293a3cefc8aed91ce3 |
IEDL.DBID | RIE |
ISSN | 0018-9545 |
IngestDate | Thu Aug 14 17:30:52 EDT 2025 Tue Jul 01 05:29:41 EDT 2025 Thu Apr 24 22:51:51 EDT 2025 Wed Aug 27 01:51:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c334t-5bdadcbe87f749cf4dfe5faf5b9768fc029fdedeccfa7e0293a3cefc8aed91ce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1121-324X 0000-0003-3783-5565 0000-0002-5325-2792 0000-0002-6521-7142 0000-0002-7333-3004 0000-0003-2544-2553 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10715716 |
PQID | 3166813197 |
PQPubID | 85454 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1109_TVT_2024_3479780 proquest_journals_3166813197 crossref_citationtrail_10_1109_TVT_2024_3479780 ieee_primary_10715716 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on vehicular technology |
PublicationTitleAbbrev | TVT |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | Konenỳ (ref4) 2016 ref13 ref57 ref12 ref59 ref14 ref58 ref53 ref52 ref55 ref54 (ref2) 2021 ref17 (ref10) 2023 ref16 ref19 ref18 ref51 ref50 Mitra (ref5) 2021 (ref66) 2018 ref46 ref45 ref48 ref47 (ref70) 2020 ref42 ref41 ref44 ref43 ref49 ref8 Bracciale (ref11) 2022 ref7 ref9 ref3 (ref1) 2023 ref6 ref40 Chen (ref71) 2017 Li (ref56) 2019 ref35 ref34 ref37 ref36 ref31 (ref68) 2020 ref30 ref33 ref32 ref39 ref38 McMahan (ref15) 2017 (ref65) 2023 (ref64) 2023 (ref67) 2008 ref72 ref24 ref23 ref26 ref25 ref20 ref63 ref22 ref21 (ref69) 2020 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref34 doi: 10.1109/MNET.011.2000430 – ident: ref6 doi: 10.1109/TWC.2020.3024629 – year: 2021 ident: ref2 article-title: The Data Deluge: What do we do with the data generated by AVs? – ident: ref16 doi: 10.1109/SPAWC51858.2021.9593130 – ident: ref17 doi: 10.1109/TVT.2023.3318080 – ident: ref49 doi: 10.1109/TIV.2023.3332675 – ident: ref54 doi: 10.1109/ICCWorkshops57953.2023.10283527 – ident: ref40 doi: 10.1109/ICPADS51040.2020.00083 – year: 2020 ident: ref69 article-title: NR; Multiplexing and channel coding – ident: ref12 doi: 10.1016/j.comnet.2018.10.012 – year: 2023 ident: ref65 article-title: 5G Toolbox – ident: ref51 doi: 10.1109/TVT.2020.3011147 – ident: ref23 doi: 10.1109/TCOMM.2019.2944169 – year: 2023 ident: ref64 article-title: OpenStreetMap – ident: ref44 doi: 10.1109/JSAC.2023.3273700 – ident: ref28 doi: 10.1109/JSAC.2023.3242727 – ident: ref31 doi: 10.1109/TITS.2014.2345663 – ident: ref41 doi: 10.1109/TVT.2021.3077893 – ident: ref63 doi: 10.1016/j.automatica.2023.111460 – ident: ref38 doi: 10.1109/MeditCom55741.2022.9928621 – ident: ref7 doi: 10.1109/TWC.2020.3042530 – ident: ref48 doi: 10.1109/TMC.2023.3283295 – volume-title: Proc. Int. Conf. Learn. Representations year: 2019 ident: ref56 article-title: On the convergence of FedAvg on non-IID data – ident: ref39 doi: 10.1109/ACCESS.2020.2968399 – ident: ref13 doi: 10.1109/TWC.2015.2481879 – year: 2022 ident: ref11 article-title: Crawdad roma/taxi – ident: ref37 doi: 10.1109/COMST.2021.3089688 – ident: ref60 doi: 10.1109/TVT.2021.3049894 – ident: ref3 doi: 10.1109/MVT.2020.3019650 – year: 2016 ident: ref4 article-title: Federated learning: Strategies for improving communication efficiency – ident: ref59 doi: 10.1109/TCCN.2017.2653189 – ident: ref24 doi: 10.1109/TMC.2022.3148208 – ident: ref26 doi: 10.1109/TVT.2020.3015268 – start-page: 14606 volume-title: Proc. 35th Int. Conf. Neural Inf. Process. Syst. year: 2021 ident: ref5 article-title: Linear convergence in federated learning: Tackling client heterogeneity and sparse gradients – ident: ref57 doi: 10.1109/TITS.2020.3015210 – ident: ref33 doi: 10.1109/BigDataService52369.2021.00018 – ident: ref62 doi: 10.1109/TVT.2024.3479780 – start-page: 1273 volume-title: Proc. Artif. Intell. Statist. year: 2017 ident: ref15 article-title: Communication-efficient learning of deep networks from decentralized data – ident: ref30 doi: 10.1109/TVT.2016.2538461 – ident: ref53 doi: 10.1109/TMC.2022.3222763 – ident: ref25 doi: 10.1109/LCN52139.2021.9524974 – year: 2023 ident: ref1 article-title: Evolution of vehicular communication systems beyond 5G – ident: ref20 doi: 10.1109/CDC45484.2021.9683685 – ident: ref42 doi: 10.1109/TWC.2022.3221770 – ident: ref58 doi: 10.1109/LWC.2022.3149783 – ident: ref21 doi: 10.1109/ICC40277.2020.9149138 – year: 2017 ident: ref71 article-title: Rethinking Atrous convolution for semantic image segmentation – year: 2020 ident: ref70 article-title: NR; Physical layer procedures for data – year: 2020 ident: ref68 article-title: NR; Physical channels and modulation – ident: ref36 doi: 10.1109/TVT.2021.3098170 – ident: ref18 doi: 10.1109/TWC.2021.3052681 – ident: ref43 doi: 10.1109/TITS.2021.3099597 – ident: ref47 doi: 10.1016/j.future.2021.11.020 – ident: ref52 doi: 10.1016/j.comcom.2021.01.012 – ident: ref9 doi: 10.1109/LWC.2021.3132458 – ident: ref55 doi: 10.23919/SoftCOM55329.2022.9911517 – ident: ref27 doi: 10.1109/LWC.2022.3141792 – ident: ref19 doi: 10.1109/JSAC.2021.3118436 – ident: ref50 doi: 10.1109/GLOCOMW.2013.6855723 – ident: ref22 doi: 10.1109/JIOT.2020.3036157 – ident: ref61 doi: 10.1109/MITS.2018.2806632 – ident: ref8 doi: 10.1109/MWC.2019.1800146 – ident: ref35 doi: 10.1109/TITS.2021.3099368 – year: 2023 ident: ref10 article-title: Simulator of urban MObility – ident: ref72 doi: 10.1109/ICCV.2019.00140 – ident: ref32 doi: 10.1109/OJCS.2020.2992630 – ident: ref29 doi: 10.1109/JIOT.2018.2872122 – ident: ref45 doi: 10.1109/ICC45041.2023.10279773 – volume-title: Guidelines for Eval. of Radio Interface Technol. for IMT-Adv. year: 2008 ident: ref67 – ident: ref14 doi: 10.1109/CVPRW.2018.00141 – ident: ref46 doi: 10.23919/JCC.2023.03.001 – year: 2018 ident: ref66 article-title: Study 3D channel model for LTE publication-title: version 12.7.0 |
SSID | ssj0014491 |
Score | 2.4558878 |
Snippet | Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3311 |
SubjectTerms | 5G mobile communication Adaptive algorithms Artificial intelligence Artificial neural networks Co-design Computation Computational modeling Costs Design optimization Federated learning Image segmentation Intelligent vehicles Machine learning Optimization Processor scheduling Regression models REM Resource management Resource scheduling Scheduling Smart sensors Training vehicular networks Windows (intervals) Wireless networks |
Title | VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning |
URI | https://ieeexplore.ieee.org/document/10715716 https://www.proquest.com/docview/3166813197 |
Volume | 74 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1939-9359 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014491 issn: 0018-9545 databaseCode: RIE dateStart: 19670101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWACQbeiPJSBhYGlyR2YocNARVClAHaqkyRfX0NCNQiaIXg67GdFFUgEFsS2VHk48dxfO65hOxbKQ1LQVKTKk09I6Y6TZCy1MQ5gEWIfXBy-yo_7_KLftavg9VDLAwiBvEZNv1lOMs3Qxj7X2VuhIskcwR_lswKUVTBWl9HBpzX6fESN4IdL5icScbFYafXcTvBlDd92KTwDpBTa1BIqvJjJg7LS2uJXE0-rFKVPDbHI92Ej2-ejf_-8mWyWBPN6LjqGStkBgerZGHKfnCN3Pauz9q0dXkUtYdBI_tOj9_UC0ZVqoeAGb1xqBovV79zj-lpEHxEjulGPbx_CCLWqOUNKRxnNVHt1nq3Trqts87JOa1TLVBgjI9opo0yoFEKK3gBlhuLmVU2046uSAtxWljjXubQUwLdHVMM0IJUaIoEkG2QucFwgJskyiGzTHAjjM65UrKIY6UNWi1yEICyQQ4njV9C7UPu02E8lWE_Ehelg6v0cJU1XA1y8FXjufLg-KPsum_9qXJVwzfIzgTgsh6lryVL8lwmbhISW79U2ybzqU_4G2TaO2Ru9DLGXcdCRnov9L5PKvnbYg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3BcgAOfO6KwgI5cOHgbhI7scNtBVsVaHuAbrWcIns8XhCoRUsrBL-esZOuKhCIWxLZUeTnj-f4zRuAZ8EYL0s0wpfWiciIhSsLErL0eY0YCPMYnDyd1eNT9easOuuD1VMsDBEl8RkN42U6y_cr3MRfZTzCdVExwb8K1yreVuguXOvy0ECpPkFewWOYmcH2VDJvjuaLOe8FSzWMgZM6ekDurEIprcofc3FaYEa3Ybb9tE5X8nm4Wbsh_vzNtfG_v_0O3OqpZnbc9Y27cIWW9-DmjgHhffiweHcyFaPJi2y6SirZH-L4u72grEv2kFAT7xlXHwXr5_xYvEqSj4y5bragj5-SjDUbRUsKZq0-6_1az_fhdHQyfzkWfbIFgVKqtaictx4dGR20ajAoH6gKNlSOCYsJmJdN8Pwyxs9q4jtpJVJAY8k3BZI8gL3lakkPIKuxClIrr72rlbWmyXPrPAWna9RIZgBH28ZvsXcijwkxvrRpR5I3LcPVRrjaHq4BPL-s8bVz4fhH2f3Y-jvluoYfwOEW4LYfp99aWdS1KXga0g__Uu0pXB_Pp5N28nr29hHcKGP63yTaPoS99cWGHjMnWbsnqSf-Athi3rM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VREM-FL%3A+Mobility-Aware+Computation-Scheduling+Co-Design+for+Vehicular+Federated+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Ballotta%2C+Luca&rft.au=Fabbro%2C+Nicolo+Dal&rft.au=Perin%2C+Giovanni&rft.au=Schenato%2C+Luca&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=74&rft.issue=2&rft.spage=3311&rft.epage=3326&rft_id=info:doi/10.1109%2FTVT.2024.3479780&rft.externalDocID=10715716 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon |