VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning

Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 74; no. 2; pp. 3311 - 3326
Main Authors Ballotta, Luca, Fabbro, Nicolo Dal, Perin, Giovanni, Schenato, Luca, Rossi, Michele, Piro, Giuseppe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2024.3479780

Cover

Abstract Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most promising techniques for training global machine learning models while preserving data privacy of vehicles and optimizing communications resource usage. In this article, we propose vehicular radio environment map federated learning (VREM-FL), a computation-scheduling co-design for vehicular federated learning that combines mobility of vehicles with 5G radio environment maps. VREM-FL jointly optimizes learning performance of the global model and wisely allocates communication and computation resources. This is achieved by orchestrating local computations at the vehicles in conjunction with transmission of their local models in an adaptive and predictive fashion, by exploiting radio channel maps. The proposed algorithm can be tuned to trade training time for radio resource usage. Experimental results demonstrate that VREM-FL outperforms literature benchmarks for both a linear regression model (learning time reduced by 28%) and a deep neural network for semantic image segmentation (doubling the number of model updates within the same time window).
AbstractList Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most promising techniques for training global machine learning models while preserving data privacy of vehicles and optimizing communications resource usage. In this article, we propose vehicular radio environment map federated learning (VREM-FL), a computation-scheduling co-design for vehicular federated learning that combines mobility of vehicles with 5G radio environment maps. VREM-FL jointly optimizes learning performance of the global model and wisely allocates communication and computation resources. This is achieved by orchestrating local computations at the vehicles in conjunction with transmission of their local models in an adaptive and predictive fashion, by exploiting radio channel maps. The proposed algorithm can be tuned to trade training time for radio resource usage. Experimental results demonstrate that VREM-FL outperforms literature benchmarks for both a linear regression model (learning time reduced by 28%) and a deep neural network for semantic image segmentation (doubling the number of model updates within the same time window).
Author Ballotta, Luca
Schenato, Luca
Rossi, Michele
Perin, Giovanni
Piro, Giuseppe
Fabbro, Nicolo Dal
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0002-6521-7142
  surname: Ballotta
  fullname: Ballotta, Luca
  email: l.ballotta@tudelft.nl
  organization: Delft Center for Systems and Control, Delft University of Technology, Delft, CD, The Netherlands
– sequence: 2
  givenname: Nicolo Dal
  orcidid: 0000-0002-5325-2792
  surname: Fabbro
  fullname: Fabbro, Nicolo Dal
  email: ndf96@seas.upenn.edu
  organization: Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PD, USA
– sequence: 3
  givenname: Giovanni
  orcidid: 0000-0002-7333-3004
  surname: Perin
  fullname: Perin, Giovanni
  email: giovanni.perin.1@unipd.it
  organization: Department of Information Engineering, University of Padova, Padova, Italy
– sequence: 4
  givenname: Luca
  orcidid: 0000-0003-2544-2553
  surname: Schenato
  fullname: Schenato, Luca
  email: l.schenato@unipd.it
  organization: Department of Information Engineering, University of Padova, Padova, Italy
– sequence: 5
  givenname: Michele
  orcidid: 0000-0003-1121-324X
  surname: Rossi
  fullname: Rossi, Michele
  email: michele.rossi@unipd.it
  organization: Department of Information Engineering, University of Padova, Padova, Italy
– sequence: 6
  givenname: Giuseppe
  orcidid: 0000-0003-3783-5565
  surname: Piro
  fullname: Piro, Giuseppe
  email: giuseppe.piro@poliba.it
  organization: Department of Electrical and Information Engineering, Politecnico di Bari, Bari, Italy
BookMark eNp9kM1LwzAYxoMouE3vHjwUPGcmS9o03sbcVNgQdA48lTR5s2V07UxbZP-9Gd1BPHh6eV6eD_j10XlZlYDQDSVDSom8X66WwxEZ8SHjQoqUnKEelUxiyWJ5jnqE0BTLmMeXqF_X2yA5l7SHPldv0wWezR-iRZW7wjUHPP5WHqJJtdu3jWpcVeJ3vQHTFq5chzd-hNqty8hWPlrBxum2UD6agQGvGjDRHJQvg_UKXVhV1HB9ugP0MZsuJ894_vr0MhnPsWaMNzjOjTI6h1RYwaW23FiIrbJxLkWSWk1G0ppQrrVVAoJiimmwOlVgJNXABuiu69376quFusm2VevLMJkxmiQpZVSK4CKdS_uqrj3YbO_dTvlDRkl2BJgFgNkRYHYCGCLJn4h2HZDGK1f8F7ztgg4Afu0IGguasB_DsYHK
CODEN ITVTAB
CitedBy_id crossref_primary_10_1109_TVT_2024_3479780
Cites_doi 10.1109/MNET.011.2000430
10.1109/TWC.2020.3024629
10.1109/SPAWC51858.2021.9593130
10.1109/TVT.2023.3318080
10.1109/TIV.2023.3332675
10.1109/ICCWorkshops57953.2023.10283527
10.1109/ICPADS51040.2020.00083
10.1016/j.comnet.2018.10.012
10.1109/TVT.2020.3011147
10.1109/TCOMM.2019.2944169
10.1109/JSAC.2023.3273700
10.1109/JSAC.2023.3242727
10.1109/TITS.2014.2345663
10.1109/TVT.2021.3077893
10.1016/j.automatica.2023.111460
10.1109/MeditCom55741.2022.9928621
10.1109/TWC.2020.3042530
10.1109/TMC.2023.3283295
10.1109/ACCESS.2020.2968399
10.1109/TWC.2015.2481879
10.1109/COMST.2021.3089688
10.1109/TVT.2021.3049894
10.1109/MVT.2020.3019650
10.1109/TCCN.2017.2653189
10.1109/TMC.2022.3148208
10.1109/TVT.2020.3015268
10.1109/TITS.2020.3015210
10.1109/BigDataService52369.2021.00018
10.1109/TVT.2024.3479780
10.1109/TVT.2016.2538461
10.1109/TMC.2022.3222763
10.1109/LCN52139.2021.9524974
10.1109/CDC45484.2021.9683685
10.1109/TWC.2022.3221770
10.1109/LWC.2022.3149783
10.1109/ICC40277.2020.9149138
10.1109/TVT.2021.3098170
10.1109/TWC.2021.3052681
10.1109/TITS.2021.3099597
10.1016/j.future.2021.11.020
10.1016/j.comcom.2021.01.012
10.1109/LWC.2021.3132458
10.23919/SoftCOM55329.2022.9911517
10.1109/LWC.2022.3141792
10.1109/JSAC.2021.3118436
10.1109/GLOCOMW.2013.6855723
10.1109/JIOT.2020.3036157
10.1109/MITS.2018.2806632
10.1109/MWC.2019.1800146
10.1109/TITS.2021.3099368
10.1109/ICCV.2019.00140
10.1109/OJCS.2020.2992630
10.1109/JIOT.2018.2872122
10.1109/ICC45041.2023.10279773
10.1109/CVPRW.2018.00141
10.23919/JCC.2023.03.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1109/TVT.2024.3479780
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access (Activated by CARLI)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-9359
EndPage 3326
ExternalDocumentID 10_1109_TVT_2024_3479780
10715716
Genre orig-research
GrantInformation_xml – fundername: European Union
– fundername: EU Project ROBUST-6G
  grantid: 101139068
– fundername: Italian National Recovery and Resilience Plan of NextGenerationEU
– fundername: PRIN
  grantid: 2017NS9FEY
– fundername: Italian Ministry of Education, University and Research
– fundername: 2017NS9FEY "Realtime Control of 5G Wireless Networks"
– fundername: partnership on "Telecommunications of the Future"
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAIKC
AAJGR
AAMNW
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c334t-5bdadcbe87f749cf4dfe5faf5b9768fc029fdedeccfa7e0293a3cefc8aed91ce3
IEDL.DBID RIE
ISSN 0018-9545
IngestDate Thu Aug 14 17:30:52 EDT 2025
Tue Jul 01 05:29:41 EDT 2025
Thu Apr 24 22:51:51 EDT 2025
Wed Aug 27 01:51:11 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c334t-5bdadcbe87f749cf4dfe5faf5b9768fc029fdedeccfa7e0293a3cefc8aed91ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1121-324X
0000-0003-3783-5565
0000-0002-5325-2792
0000-0002-6521-7142
0000-0002-7333-3004
0000-0003-2544-2553
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10715716
PQID 3166813197
PQPubID 85454
PageCount 16
ParticipantIDs crossref_primary_10_1109_TVT_2024_3479780
proquest_journals_3166813197
crossref_citationtrail_10_1109_TVT_2024_3479780
ieee_primary_10715716
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on vehicular technology
PublicationTitleAbbrev TVT
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Konenỳ (ref4) 2016
ref13
ref57
ref12
ref59
ref14
ref58
ref53
ref52
ref55
ref54
(ref2) 2021
ref17
(ref10) 2023
ref16
ref19
ref18
ref51
ref50
Mitra (ref5) 2021
(ref66) 2018
ref46
ref45
ref48
ref47
(ref70) 2020
ref42
ref41
ref44
ref43
ref49
ref8
Bracciale (ref11) 2022
ref7
ref9
ref3
(ref1) 2023
ref6
ref40
Chen (ref71) 2017
Li (ref56) 2019
ref35
ref34
ref37
ref36
ref31
(ref68) 2020
ref30
ref33
ref32
ref39
ref38
McMahan (ref15) 2017
(ref65) 2023
(ref64) 2023
(ref67) 2008
ref72
ref24
ref23
ref26
ref25
ref20
ref63
ref22
ref21
(ref69) 2020
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref34
  doi: 10.1109/MNET.011.2000430
– ident: ref6
  doi: 10.1109/TWC.2020.3024629
– year: 2021
  ident: ref2
  article-title: The Data Deluge: What do we do with the data generated by AVs?
– ident: ref16
  doi: 10.1109/SPAWC51858.2021.9593130
– ident: ref17
  doi: 10.1109/TVT.2023.3318080
– ident: ref49
  doi: 10.1109/TIV.2023.3332675
– ident: ref54
  doi: 10.1109/ICCWorkshops57953.2023.10283527
– ident: ref40
  doi: 10.1109/ICPADS51040.2020.00083
– year: 2020
  ident: ref69
  article-title: NR; Multiplexing and channel coding
– ident: ref12
  doi: 10.1016/j.comnet.2018.10.012
– year: 2023
  ident: ref65
  article-title: 5G Toolbox
– ident: ref51
  doi: 10.1109/TVT.2020.3011147
– ident: ref23
  doi: 10.1109/TCOMM.2019.2944169
– year: 2023
  ident: ref64
  article-title: OpenStreetMap
– ident: ref44
  doi: 10.1109/JSAC.2023.3273700
– ident: ref28
  doi: 10.1109/JSAC.2023.3242727
– ident: ref31
  doi: 10.1109/TITS.2014.2345663
– ident: ref41
  doi: 10.1109/TVT.2021.3077893
– ident: ref63
  doi: 10.1016/j.automatica.2023.111460
– ident: ref38
  doi: 10.1109/MeditCom55741.2022.9928621
– ident: ref7
  doi: 10.1109/TWC.2020.3042530
– ident: ref48
  doi: 10.1109/TMC.2023.3283295
– volume-title: Proc. Int. Conf. Learn. Representations
  year: 2019
  ident: ref56
  article-title: On the convergence of FedAvg on non-IID data
– ident: ref39
  doi: 10.1109/ACCESS.2020.2968399
– ident: ref13
  doi: 10.1109/TWC.2015.2481879
– year: 2022
  ident: ref11
  article-title: Crawdad roma/taxi
– ident: ref37
  doi: 10.1109/COMST.2021.3089688
– ident: ref60
  doi: 10.1109/TVT.2021.3049894
– ident: ref3
  doi: 10.1109/MVT.2020.3019650
– year: 2016
  ident: ref4
  article-title: Federated learning: Strategies for improving communication efficiency
– ident: ref59
  doi: 10.1109/TCCN.2017.2653189
– ident: ref24
  doi: 10.1109/TMC.2022.3148208
– ident: ref26
  doi: 10.1109/TVT.2020.3015268
– start-page: 14606
  volume-title: Proc. 35th Int. Conf. Neural Inf. Process. Syst.
  year: 2021
  ident: ref5
  article-title: Linear convergence in federated learning: Tackling client heterogeneity and sparse gradients
– ident: ref57
  doi: 10.1109/TITS.2020.3015210
– ident: ref33
  doi: 10.1109/BigDataService52369.2021.00018
– ident: ref62
  doi: 10.1109/TVT.2024.3479780
– start-page: 1273
  volume-title: Proc. Artif. Intell. Statist.
  year: 2017
  ident: ref15
  article-title: Communication-efficient learning of deep networks from decentralized data
– ident: ref30
  doi: 10.1109/TVT.2016.2538461
– ident: ref53
  doi: 10.1109/TMC.2022.3222763
– ident: ref25
  doi: 10.1109/LCN52139.2021.9524974
– year: 2023
  ident: ref1
  article-title: Evolution of vehicular communication systems beyond 5G
– ident: ref20
  doi: 10.1109/CDC45484.2021.9683685
– ident: ref42
  doi: 10.1109/TWC.2022.3221770
– ident: ref58
  doi: 10.1109/LWC.2022.3149783
– ident: ref21
  doi: 10.1109/ICC40277.2020.9149138
– year: 2017
  ident: ref71
  article-title: Rethinking Atrous convolution for semantic image segmentation
– year: 2020
  ident: ref70
  article-title: NR; Physical layer procedures for data
– year: 2020
  ident: ref68
  article-title: NR; Physical channels and modulation
– ident: ref36
  doi: 10.1109/TVT.2021.3098170
– ident: ref18
  doi: 10.1109/TWC.2021.3052681
– ident: ref43
  doi: 10.1109/TITS.2021.3099597
– ident: ref47
  doi: 10.1016/j.future.2021.11.020
– ident: ref52
  doi: 10.1016/j.comcom.2021.01.012
– ident: ref9
  doi: 10.1109/LWC.2021.3132458
– ident: ref55
  doi: 10.23919/SoftCOM55329.2022.9911517
– ident: ref27
  doi: 10.1109/LWC.2022.3141792
– ident: ref19
  doi: 10.1109/JSAC.2021.3118436
– ident: ref50
  doi: 10.1109/GLOCOMW.2013.6855723
– ident: ref22
  doi: 10.1109/JIOT.2020.3036157
– ident: ref61
  doi: 10.1109/MITS.2018.2806632
– ident: ref8
  doi: 10.1109/MWC.2019.1800146
– ident: ref35
  doi: 10.1109/TITS.2021.3099368
– year: 2023
  ident: ref10
  article-title: Simulator of urban MObility
– ident: ref72
  doi: 10.1109/ICCV.2019.00140
– ident: ref32
  doi: 10.1109/OJCS.2020.2992630
– ident: ref29
  doi: 10.1109/JIOT.2018.2872122
– ident: ref45
  doi: 10.1109/ICC45041.2023.10279773
– volume-title: Guidelines for Eval. of Radio Interface Technol. for IMT-Adv.
  year: 2008
  ident: ref67
– ident: ref14
  doi: 10.1109/CVPRW.2018.00141
– ident: ref46
  doi: 10.23919/JCC.2023.03.001
– year: 2018
  ident: ref66
  article-title: Study 3D channel model for LTE
  publication-title: version 12.7.0
SSID ssj0014491
Score 2.4558878
Snippet Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3311
SubjectTerms 5G mobile communication
Adaptive algorithms
Artificial intelligence
Artificial neural networks
Co-design
Computation
Computational modeling
Costs
Design optimization
Federated learning
Image segmentation
Intelligent vehicles
Machine learning
Optimization
Processor scheduling
Regression models
REM
Resource management
Resource scheduling
Scheduling
Smart sensors
Training
vehicular networks
Windows (intervals)
Wireless networks
Title VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning
URI https://ieeexplore.ieee.org/document/10715716
https://www.proquest.com/docview/3166813197
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1939-9359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014491
  issn: 0018-9545
  databaseCode: RIE
  dateStart: 19670101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV27TsMwFLWACQbeiPJSBhYGlyR2YocNARVClAHaqkyRfX0NCNQiaIXg67GdFFUgEFsS2VHk48dxfO65hOxbKQ1LQVKTKk09I6Y6TZCy1MQ5gEWIfXBy-yo_7_KLftavg9VDLAwiBvEZNv1lOMs3Qxj7X2VuhIskcwR_lswKUVTBWl9HBpzX6fESN4IdL5icScbFYafXcTvBlDd92KTwDpBTa1BIqvJjJg7LS2uJXE0-rFKVPDbHI92Ej2-ejf_-8mWyWBPN6LjqGStkBgerZGHKfnCN3Pauz9q0dXkUtYdBI_tOj9_UC0ZVqoeAGb1xqBovV79zj-lpEHxEjulGPbx_CCLWqOUNKRxnNVHt1nq3Trqts87JOa1TLVBgjI9opo0yoFEKK3gBlhuLmVU2046uSAtxWljjXubQUwLdHVMM0IJUaIoEkG2QucFwgJskyiGzTHAjjM65UrKIY6UNWi1yEICyQQ4njV9C7UPu02E8lWE_Ehelg6v0cJU1XA1y8FXjufLg-KPsum_9qXJVwzfIzgTgsh6lryVL8lwmbhISW79U2ybzqU_4G2TaO2Ru9DLGXcdCRnov9L5PKvnbYg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwEB3BcgAOfO6KwgI5cOHgbhI7scNtBVsVaHuAbrWcIns8XhCoRUsrBL-esZOuKhCIWxLZUeTnj-f4zRuAZ8EYL0s0wpfWiciIhSsLErL0eY0YCPMYnDyd1eNT9easOuuD1VMsDBEl8RkN42U6y_cr3MRfZTzCdVExwb8K1yreVuguXOvy0ECpPkFewWOYmcH2VDJvjuaLOe8FSzWMgZM6ekDurEIprcofc3FaYEa3Ybb9tE5X8nm4Wbsh_vzNtfG_v_0O3OqpZnbc9Y27cIWW9-DmjgHhffiweHcyFaPJi2y6SirZH-L4u72grEv2kFAT7xlXHwXr5_xYvEqSj4y5bragj5-SjDUbRUsKZq0-6_1az_fhdHQyfzkWfbIFgVKqtaictx4dGR20ajAoH6gKNlSOCYsJmJdN8Pwyxs9q4jtpJVJAY8k3BZI8gL3lakkPIKuxClIrr72rlbWmyXPrPAWna9RIZgBH28ZvsXcijwkxvrRpR5I3LcPVRrjaHq4BPL-s8bVz4fhH2f3Y-jvluoYfwOEW4LYfp99aWdS1KXga0g__Uu0pXB_Pp5N28nr29hHcKGP63yTaPoS99cWGHjMnWbsnqSf-Athi3rM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VREM-FL%3A+Mobility-Aware+Computation-Scheduling+Co-Design+for+Vehicular+Federated+Learning&rft.jtitle=IEEE+transactions+on+vehicular+technology&rft.au=Ballotta%2C+Luca&rft.au=Fabbro%2C+Nicolo+Dal&rft.au=Perin%2C+Giovanni&rft.au=Schenato%2C+Luca&rft.date=2025-02-01&rft.pub=IEEE&rft.issn=0018-9545&rft.volume=74&rft.issue=2&rft.spage=3311&rft.epage=3326&rft_id=info:doi/10.1109%2FTVT.2024.3479780&rft.externalDocID=10715716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9545&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9545&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9545&client=summon