VREM-FL: Mobility-Aware Computation-Scheduling Co-Design for Vehicular Federated Learning

Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most pro...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on vehicular technology Vol. 74; no. 2; pp. 3311 - 3326
Main Authors Ballotta, Luca, Fabbro, Nicolo Dal, Perin, Giovanni, Schenato, Luca, Rossi, Michele, Piro, Giuseppe
Format Journal Article
LanguageEnglish
Published New York IEEE 01.02.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9545
1939-9359
DOI10.1109/TVT.2024.3479780

Cover

More Information
Summary:Assisted and autonomous driving are rapidly gaining momentum and will soon become a reality. Artificial intelligence and machine learning are regarded as key enablers thanks to the massive amount of data that smart vehicles will collect from onboard sensors. Federated learning is one of the most promising techniques for training global machine learning models while preserving data privacy of vehicles and optimizing communications resource usage. In this article, we propose vehicular radio environment map federated learning (VREM-FL), a computation-scheduling co-design for vehicular federated learning that combines mobility of vehicles with 5G radio environment maps. VREM-FL jointly optimizes learning performance of the global model and wisely allocates communication and computation resources. This is achieved by orchestrating local computations at the vehicles in conjunction with transmission of their local models in an adaptive and predictive fashion, by exploiting radio channel maps. The proposed algorithm can be tuned to trade training time for radio resource usage. Experimental results demonstrate that VREM-FL outperforms literature benchmarks for both a linear regression model (learning time reduced by 28%) and a deep neural network for semantic image segmentation (doubling the number of model updates within the same time window).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2024.3479780