PID Controlling Approach Based on FBG Array Measurements for Laser Ablation of Pancreatic Tissues

In this article, we propose a temperature-based proportional-integral-derivative (PID) controlling algorithm using highly dense fiber Bragg grating (FBG) arrays for laser ablation (LA) of ex vivo pancreatic tissues. Custom-made highly dense FBG arrays with a spatial resolution of 1.2 mm were fabrica...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on instrumentation and measurement Vol. 70; pp. 1 - 9
Main Authors Korganbayev, Sanzhar, Orrico, Annalisa, Bianchi, Leonardo, Paloschi, Davide, Wolf, Alexey, Dostovalov, Alexander, Saccomandi, Paola
Format Journal Article
LanguageEnglish
Published New York IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9456
1557-9662
1557-9662
DOI10.1109/TIM.2021.3112790

Cover

More Information
Summary:In this article, we propose a temperature-based proportional-integral-derivative (PID) controlling algorithm using highly dense fiber Bragg grating (FBG) arrays for laser ablation (LA) of ex vivo pancreatic tissues. Custom-made highly dense FBG arrays with a spatial resolution of 1.2 mm were fabricated with the femtosecond point-by-point writing technology and optimized for LA applications. In order to obtain proper PID gain values, finite element method-based iterative simulation of different PID gains was performed. Then, the proposed algorithm, with numerically derived PID gains, was experimentally validated. In the experiments, the point temperature was controlled at different distances from the laser fiber tip (6.0, 7.2, 8.4, and 10.8 mm). The obtained results report robust controlling and correlation between controlled distance and the resulting area of ablation. The results of the work encourage further investigation of FBG array application for LA control.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9456
1557-9662
1557-9662
DOI:10.1109/TIM.2021.3112790