AN EXPERIMENTAL ANALYSIS OF SPATIAL INDEXING ALGORITHMS FOR REAL TIME SAFETY CRITICAL MAP APPLICATION

This paper presents a study that compares the three space partitioning and spatial indexing techniques, KD Tree, Quad KD Tree, and PR Tree. KD Tree is a data structure proposed by Bentley (Bentley and Friedman, 1979) that aims to cluster objects according to their spatial location. Quad KD Tree is a...

Full description

Saved in:
Bibliographic Details
Published inISPRS annals of the photogrammetry, remote sensing and spatial information sciences Vol. V-4-2021; pp. 41 - 48
Main Authors Çetin, F., Kulekci, M. O.
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 17.06.2021
Copernicus Publications
Subjects
Online AccessGet full text
ISSN2194-9050
2194-9042
2196-6346
2194-9050
DOI10.5194/isprs-annals-V-4-2021-41-2021

Cover

More Information
Summary:This paper presents a study that compares the three space partitioning and spatial indexing techniques, KD Tree, Quad KD Tree, and PR Tree. KD Tree is a data structure proposed by Bentley (Bentley and Friedman, 1979) that aims to cluster objects according to their spatial location. Quad KD Tree is a data structure proposed by Berezcky (Bereczky et al., 2014) that aims to partition objects using heuristic methods. Unlike Bereczky’s partitioning technique, a new partitioning technique is presented based on dividing objects according to space-driven, in the context of this study. PR Tree is a data structure proposed by Arge (Arge et al., 2008) that is an asymptotically optimal R-Tree variant, enables data-driven segmentation. This study mainly aimed to search and render big spatial data in real-time safety-critical avionics navigation map application. Such a real-time system needs to efficiently reach the required records inside a specific boundary. Performing range query during the runtime (such as finding the closest neighbors) is extremely important in performance. The most crucial purpose of these data structures is to reduce the number of comparisons to solve the range searching problem. With this study, the algorithms’ data structures are created and indexed, and worst-case analyses are made to cover the whole area to measure the range search performance. Also, these techniques’ performance is benchmarked according to elapsed time and memory usage. As a result of these experimental studies, Quad KD Tree outperformed in range search analysis over the other techniques, especially when the data set is massive and consists of different geometry types.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2194-9050
2194-9042
2196-6346
2194-9050
DOI:10.5194/isprs-annals-V-4-2021-41-2021