Decreased complexity of glucose dynamics in diabetes: evidence from multiscale entropy analysis of continuous glucose monitoring system data
Parameters of glucose dynamics recorded by the continuous glucose monitoring system (CGMS) could help in the control of glycemic fluctuations, which is important in diabetes management. Multiscale entropy (MSE) analysis has recently been developed to measure the complexity of physical and physiologi...
Saved in:
Published in | American journal of physiology. Regulatory, integrative and comparative physiology Vol. 307; no. 2; pp. R179 - R183 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Physiological Society
15.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0363-6119 1522-1490 1522-1490 |
DOI | 10.1152/ajpregu.00108.2014 |
Cover
Summary: | Parameters of glucose dynamics recorded by the continuous glucose monitoring system (CGMS) could help in the control of glycemic fluctuations, which is important in diabetes management. Multiscale entropy (MSE) analysis has recently been developed to measure the complexity of physical and physiological time sequences. A reduced MSE complexity index indicates the increased repetition patterns of the time sequence, and, thus, a decreased complexity in this system. No study has investigated the MSE analysis of glucose dynamics in diabetes. This study was designed to compare the complexity of glucose dynamics between the diabetic patients ( n = 17) and the control subjects ( n = 13), who were matched for sex, age, and body mass index via MSE analysis using the CGMS data. Compared with the control subjects, the diabetic patients revealed a significant increase ( P < 0.001) in the mean (diabetic patients 166.0 ± 10.4 vs. control subjects 93.3 ± 1.5 mg/dl), the standard deviation (51.7 ± 4.3 vs. 11.1 ± 0.5 mg/dl), and the mean amplitude of glycemic excursions (127.0 ± 9.2 vs. 27.7 ± 1.3 mg/dl) of the glucose levels; and a significant decrease ( P < 0.001) in the MSE complexity index (5.09 ± 0.23 vs. 7.38 ± 0.28). In conclusion, the complexity of glucose dynamics is decreased in diabetes. This finding implies the reactivity of glucoregulation is impaired in the diabetic patients. Such impairment presenting as an increased regularity of glycemic fluctuating pattern could be detected by MSE analysis. Thus, the MSE complexity index could potentially be used as a biomarker in the monitoring of diabetes. |
---|---|
Bibliography: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0363-6119 1522-1490 1522-1490 |
DOI: | 10.1152/ajpregu.00108.2014 |