A Cost-Effective Random Testing Method for Programs with Non-Numeric Inputs

Random testing (RT) has been widely used in the testing of various software and hardware systems. Adaptive random testing (ART) is a family of random testing techniques that aim to enhance the failure-detection effectiveness of RT by spreading random test cases evenly throughout the input domain. AR...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on computers Vol. 65; no. 12; pp. 3509 - 3523
Main Authors Barus, Arlinta C., Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Merkel, Robert, Rothermel, Gregg
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9340
1557-9956
2326-3814
1557-9956
DOI10.1109/TC.2016.2547380

Cover

More Information
Summary:Random testing (RT) has been widely used in the testing of various software and hardware systems. Adaptive random testing (ART) is a family of random testing techniques that aim to enhance the failure-detection effectiveness of RT by spreading random test cases evenly throughout the input domain. ART has been empirically shown to be effective on software with numeric inputs. However, there are two aspects of ART that need to be addressed to render its adoption more widespread-applicability to programs with nonnumeric inputs, and the high computation overhead of many ART algorithms. We present a linear-order ART algorithm for software with non-numeric inputs. The key requirement for using ART with non-numeric inputs is an appropriate "distance" measure. We use the concepts of categories and choices from category-partition testing to formulate such a measure. We investigate the failure-detection effectiveness of our technique by performing an empirical study on 14 object programs, using two standard metrics-F-measure and P-measure. Our ART algorithm statistically significantly outperforms RT on 10 of the 14 programs studied, and exhibits performance similar to RT on three of the four remaining programs. The selection overhead of our ART algorithm is close to that of RT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9340
1557-9956
2326-3814
1557-9956
DOI:10.1109/TC.2016.2547380