Learning deterministic regular grammars from stochastic samples in polynomial time

In this paper, the identification of stochastic regular languages is addressed. For this purpose, we propose a class of algorithms which allow for the identification of the structure of the minimal stochastic automaton generating the language. It is shown that the time needed grows only linearly wit...

Full description

Saved in:
Bibliographic Details
Published inRAIRO. Informatique théorique et applications Vol. 33; no. 1; pp. 1 - 19
Main Authors Carrasco, Rafael C., Oncina, Jose
Format Journal Article
LanguageEnglish
Published Paris EDP Sciences 01.01.1999
Subjects
Online AccessGet full text
ISSN0988-3754
1290-385X
DOI10.1051/ita:1999102

Cover

More Information
Summary:In this paper, the identification of stochastic regular languages is addressed. For this purpose, we propose a class of algorithms which allow for the identification of the structure of the minimal stochastic automaton generating the language. It is shown that the time needed grows only linearly with the size of the sample set and a measure of the complexity of the task is provided. Experimentally, our implementation proves very fast for application purposes. Dans cet article, on étudie l'identification de langages réguliers stochastiques. Dans ce but, nous proposons une classe d'algorithmes permettant l'identification de la structure de l'automate stochastique minimal qu'engendre le langage. On trouve que le temps nécessaire croît linéairement avec la taille de l'échantillon et on donne une mesure de la complexité de l'identification. Expérimentalement, notre mise en œuvre est très rapide, ce qui la rend très intéressante pour des applications.
Bibliography:ark:/67375/80W-5BSXDG1P-S
PII:S0988375499001022
istex:DF770C67D8BDCB7D59F454AE120D53056E6B31F3
publisher-ID:ita9907
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0988-3754
1290-385X
DOI:10.1051/ita:1999102