Learning deterministic regular grammars from stochastic samples in polynomial time
In this paper, the identification of stochastic regular languages is addressed. For this purpose, we propose a class of algorithms which allow for the identification of the structure of the minimal stochastic automaton generating the language. It is shown that the time needed grows only linearly wit...
        Saved in:
      
    
          | Published in | RAIRO. Informatique théorique et applications Vol. 33; no. 1; pp. 1 - 19 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Paris
          EDP Sciences
    
        01.01.1999
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0988-3754 1290-385X  | 
| DOI | 10.1051/ita:1999102 | 
Cover
| Summary: | In this paper, the identification of stochastic regular languages is addressed. For this purpose, we propose a class of algorithms which allow for the identification of the structure of the minimal stochastic automaton generating the language. It is shown that the time needed grows only linearly with the size of the sample set and a measure of the complexity of the task is provided. Experimentally, our implementation proves very fast for application purposes.
Dans cet article, on étudie l'identification de langages réguliers stochastiques. Dans ce but, nous proposons une classe d'algorithmes permettant l'identification de la structure de l'automate stochastique minimal qu'engendre le langage. On trouve que le temps nécessaire croît linéairement avec la taille de l'échantillon et on donne une mesure de la complexité de l'identification. Expérimentalement, notre mise en œuvre est très rapide, ce qui la rend très intéressante pour des applications. | 
|---|---|
| Bibliography: | ark:/67375/80W-5BSXDG1P-S PII:S0988375499001022 istex:DF770C67D8BDCB7D59F454AE120D53056E6B31F3 publisher-ID:ita9907 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
| ISSN: | 0988-3754 1290-385X  | 
| DOI: | 10.1051/ita:1999102 |