Fixpoint alternation: arithmetic, transition systems, and the binary tree

We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.

Saved in:
Bibliographic Details
Published inRAIRO. Informatique théorique et applications Vol. 33; no. 4-5; pp. 341 - 356
Main Author Bradfield, J. C.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Paris EDP Sciences 01.07.1999
Subjects
Online AccessGet full text
ISSN0988-3754
1290-385X
DOI10.1051/ita:1999122

Cover

More Information
Summary:We provide an elementary proof of the fixpoint alternation hierarchy in arithmetic, which in turn allows us to simplify the proof of the modal mu-calculus alternation hierarchy. We further show that the alternation hierarchy on the binary tree is strict, resolving a problem of Niwiński.
Bibliography:ark:/67375/80W-RHS3NH6G-K
PII:S0988375499001228
publisher-ID:ita9929
istex:4B28CF6B09783EE393F362AF96CA8F5BD08539D9
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0988-3754
1290-385X
DOI:10.1051/ita:1999122