The Platinum Pedigree: a long-read benchmark for genetic variants
Recent advances in genome sequencing have improved variant calling in complex regions of the human genome. However, it is difficult to quantify variant calling performance because existing standards often focus on specificity, neglecting completeness in difficult-to-analyze regions. To create a more...
Saved in:
Published in | Nature methods Vol. 22; no. 8; pp. 1669 - 1676 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.08.2025
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1548-7091 1548-7105 1548-7105 |
DOI | 10.1038/s41592-025-02750-y |
Cover
Summary: | Recent advances in genome sequencing have improved variant calling in complex regions of the human genome. However, it is difficult to quantify variant calling performance because existing standards often focus on specificity, neglecting completeness in difficult-to-analyze regions. To create a more comprehensive truth set, we used Mendelian inheritance in a large pedigree (CEPH-1463) to filter variants across PacBio high-fidelity (HiFi), Illumina and Oxford Nanopore Technologies platforms. This generated a variant map with over 4.7 million single-nucleotide variants, 767,795 insertions and deletions (indels), 537,486 tandem repeats and 24,315 structural variants, covering 2.77 Gb of the GRCh38 genome. This work adds ~200 Mb of high-confidence regions, including 8% more small variants, and introduces the first tandem repeat and structural variant truth sets for NA12878 and her family. As an example of the value of this improved benchmark, we retrained DeepVariant using these data to reduce genotyping errors by ~34%.
This work introduces a pedigree-derived benchmark for single-nucleotide variants, indels, structural variants and tandem repeats, offering a variant map to validate sequencing workflows or to support the development and evaluation of new variant callers. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1548-7091 1548-7105 1548-7105 |
DOI: | 10.1038/s41592-025-02750-y |