Msst-eegnet: multi-scale spatio-temporal feature extraction using inception and temporal pyramid pooling for motor imagery classification
Motor imagery classification is an essential component of Brain-computer interface systems to interpret and recognize brain signals generated during the visualization of motor imagery tasks by a subject. The objective of this work is to develop a novel DL model to extract discriminative features for...
Saved in:
| Published in | Cognitive neurodynamics Vol. 19; no. 1; p. 150 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.12.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1871-4080 1871-4099 |
| DOI | 10.1007/s11571-025-10337-8 |
Cover
| Summary: | Motor imagery classification is an essential component of Brain-computer interface systems to interpret and recognize brain signals generated during the visualization of motor imagery tasks by a subject. The objective of this work is to develop a novel DL model to extract discriminative features for better generalization performance to recognize motor imagery tasks. This paper presents a novel Multi-scale spatio-temporal network (MSST-EEGNet) to extract discriminative temporal, spectral, and spatial features for motor imagery task classification. The proposed MSST-EEGNet model includes three modules namely the inception module with dilated convolution, the temporal pyramid pooling module, and the classification module. Multi-scale temporal features along with spatial features are extracted using the inception block with the dilated convolution module. A set of multi-level fine-grained and coarse-grained features are extracted using a temporal pyramid pooling module. Further, categorical cross-entropy in combination with center loss is used as a loss function. Experiments are carried out on three benchmark datasets including the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset. The evaluation results shows that the proposed MSST-EEGNet model outperforms eight existing DL models in terms of classification accuracy for subject-specific and cross-session settings. It also outperforms eight existing DL models and six existing transfer-learning models for cross-subject setting. For the subject-specific classification the proposed MSST-EEGNet model achieved an accuracy of 0.8426 ± 0.1061, 0.7779 ± 0.0938, and 0.7365 ± 0.1477 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. For the cross-session setting, the proposed MSST-EEGNet model achieved an accuracy of 0.7709 ± 0.1098, 0.7524 ± 0.1017, and 0.6860 ± 0.0990 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. For the cross-subject setting, the proposed MSST-EEGNet model achieved an accuracy of 0.7288 ± 0.0730, 0.8161 ± 0.963, and 0.7075 ± 0.0746 on the BCI Competition IV-2a dataset, the BCI Competition IV-2b dataset, and the OpenBMI dataset respectively. Furthermore, a non-parametric Friedman statistical test demonstrates statistically significant superior performance of the proposed MSST-EEGNet model over the existing models. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1871-4080 1871-4099 |
| DOI: | 10.1007/s11571-025-10337-8 |