Solution Point Characterizations and Convergence Analysis of a Descent Algorithm for Nonsmooth Continuous Complementarity Problems
We consider a nonlinear complementarity problem defined by a continuous but not necessarily locally Lipschitzian map. In particular, we examine the connection between solutions of the problem and stationary points of the associated Fischer-Burmeister merit function. This is done by deriving a new ne...
Saved in:
| Published in | Journal of optimization theory and applications Vol. 110; no. 3; pp. 493 - 513 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
Springer
01.09.2001
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-3239 1573-2878 |
| DOI | 10.1023/A:1017580126509 |
Cover
| Summary: | We consider a nonlinear complementarity problem defined by a continuous but not necessarily locally Lipschitzian map. In particular, we examine the connection between solutions of the problem and stationary points of the associated Fischer-Burmeister merit function. This is done by deriving a new necessary optimality condition and a chain rule formula for composite functions involving continuous maps. These results are given in terms of approximate Jacobians which provide the foundation for analyzing continuous nonsmooth maps. We also prove a result on the global convergence of a derivative-free descent algorithm for solving the complementarity problem. To this end, a concept of directional monotonicity for continuous maps is introduced. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0022-3239 1573-2878 |
| DOI: | 10.1023/A:1017580126509 |