Electromyographic Diaphragm and Electrocardiographic Signal Analysis for Weaning Outcome Classification in Mechanically Ventilated Patients
Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electroc...
        Saved in:
      
    
          | Published in | Sensors (Basel, Switzerland) Vol. 25; no. 19; p. 6000 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        29.09.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1424-8220 1424-8220  | 
| DOI | 10.3390/s25196000 | 
Cover
| Abstract | Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management. | 
    
|---|---|
| AbstractList | Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management. Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management.Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management.  | 
    
| Author | Arboleda, Alejandro Naranjo, Francisco Giraldo, Beatriz Fabiola Franco, Manuel  | 
    
| Author_xml | – sequence: 1 givenname: Alejandro orcidid: 0000-0001-7161-9175 surname: Arboleda fullname: Arboleda, Alejandro – sequence: 2 givenname: Manuel orcidid: 0000-0002-7289-7975 surname: Franco fullname: Franco, Manuel – sequence: 3 givenname: Francisco surname: Naranjo fullname: Naranjo, Francisco – sequence: 4 givenname: Beatriz Fabiola surname: Giraldo fullname: Giraldo, Beatriz Fabiola  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41094824$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU2PFCEQholZ437owT9gSLyoyShQdE9z3IyrbrJmTfw6dqqBnmVCwwjdMf0b_NOiPU6MBy8UFE-9VPGek5MQgyXkMWcvARR7lUXFVc0Yu0fOuBRy1QjBTv7an5LznHeMCQBoHpBTyZmSjZBn5MeVt3pMcZjjNuH-zmn62pWYcDtQDIYe7jUm447IR7cN6OllWebsMu1jol8tBhe29HYadRws3XjM2fVO4-hioC7Q91bfFUaj9zP9YsPoPI7W0A-FKKf8kNzv0Wf76BAvyOc3V58271Y3t2-vN5c3Kw1izVdG1g02EgVrKqu4UH1toGuERYtgwNQ1L2OyCqCDrsKuMhK0RAPCsE4JhAtyveiaiLt2n9yAaW4juvZ3IqZti2l02tsWalWLqtQY7CXnslt3pufYd8rUsjG8aL1YtKawx_l7Ge0oyFn7y5326E6Bny3wPsVvk81jO7isrfcYbJxyC6Lma8UrBQV9-g-6i1Mq_71QrFGwFoV6cqCmbrDm-PQffwvwfAF0ijkn2_-nu5_5fbTz | 
    
| Cites_doi | 10.4187/respcare.06176 10.1016/j.bspc.2022.104375 10.1016/j.cmpb.2012.08.015 10.3233/THC-199037 10.3389/fmed.2022.814219 10.1007/s11517-015-1275-x 10.1016/j.bspc.2011.03.007 10.2196/64592 10.1038/s41390-022-02284-5 10.1016/j.jacc.2022.08.760 10.1016/j.clinbiomech.2009.01.010 10.1016/j.heliyon.2024.e26220 10.3390/ijerph20054430 10.1186/1743-0003-4-42 10.1038/tp.2011.23 10.1088/0967-3334/36/7/1439 10.1016/j.hrtlng.2023.01.007 10.1038/s41598-020-70814-4 10.1109/EMBC46164.2021.9629815 10.3390/s22165948 10.2147/IJGM.S515170 10.1186/s13054-021-03833-w 10.1016/j.bspc.2021.103223 10.1109/TBME.2020.2969719 10.1186/cc13705 10.1109/MEMB.2009.934629 10.3390/jcm13247634 10.1073/pnas.1505545112 10.1023/A:1022627411411 10.1016/j.bspc.2021.102745 10.1186/cc12865 10.1016/j.jad.2012.01.035 10.1164/rccm.202004-1385ED 10.1007/s00134-012-2700-3 10.1016/j.jelekin.2019.07.014 10.1152/ajpheart.2000.278.6.H2039 10.1186/cc11451 10.1038/s41390-022-02085-w 10.1098/rsif.2022.0012 10.1016/j.rmed.2024.107541 10.1183/09031936.00010206 10.21037/atm.2018.05.53 10.1016/j.pulmoe.2020.02.008 10.3390/s23104759 10.1016/j.cmpb.2017.10.024  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/s25196000 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1424-8220 | 
    
| ExternalDocumentID | oai_doaj_org_article_3696252a3daf4114b7bdf1afb9d648d1 10.3390/s25196000 41094824 10_3390_s25196000  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC COVID DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 ADRAZ ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c3271-d468a84a2085e9129f6d3b82eaea3d3d6613330533b3b5ab5d43c4ad32d0b92a3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1424-8220 | 
    
| IngestDate | Mon Oct 20 20:02:56 EDT 2025 Sun Oct 26 03:37:25 EDT 2025 Sat Oct 18 22:56:43 EDT 2025 Thu Oct 16 08:22:20 EDT 2025 Mon Oct 20 01:42:01 EDT 2025 Thu Oct 09 00:30:00 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 19 | 
    
| Keywords | cardiorespiratory characterisation signal analysis time-varying spectral analysis mechanical ventilation electromyography weaning outcome diaphragm Naive Bayes classifier classification  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3271-d468a84a2085e9129f6d3b82eaea3d3d6613330533b3b5ab5d43c4ad32d0b92a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-7161-9175 0000-0002-7289-7975  | 
    
| OpenAccessLink | https://doaj.org/article/3696252a3daf4114b7bdf1afb9d648d1 | 
    
| PMID | 41094824 | 
    
| PQID | 3261089372 | 
    
| PQPubID | 2032333 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3696252a3daf4114b7bdf1afb9d648d1 unpaywall_primary_10_3390_s25196000 proquest_miscellaneous_3261791593 proquest_journals_3261089372 pubmed_primary_41094824 crossref_primary_10_3390_s25196000  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-09-29 | 
    
| PublicationDateYYYYMMDD | 2025-09-29 | 
    
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-29 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Sensors (Basel, Switzerland) | 
    
| PublicationTitleAlternate | Sensors (Basel) | 
    
| PublicationYear | 2025 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Berger (ref_50) 2012; 139 Liu (ref_43) 2012; 16 Jonkman (ref_7) 2018; 6 Richman (ref_31) 2000; 278 Xu (ref_23) 2025; 18 Hutten (ref_9) 2019; 48 Piriyapatsom (ref_1) 2024; 10 Sidek (ref_25) 2013; 109 ref_19 AbuNurah (ref_10) 2020; 26 ref_17 ref_16 Latremouille (ref_14) 2023; 93 Boles (ref_4) 2007; 29 Yang (ref_24) 2025; 13 Smital (ref_39) 2020; 67 Setsirichok (ref_36) 2012; 7 Williams (ref_5) 2022; 92 ref_22 Cortes (ref_34) 1995; 20 ref_21 Chon (ref_30) 2009; 28 Pincus (ref_47) 1994; 266 Petersen (ref_6) 2021; 25 Chaparro (ref_20) 2014; 2014 Giraldo (ref_27) 2013; 2013 Leistedt (ref_49) 2011; 1 Dres (ref_8) 2012; 38 Garde (ref_26) 2015; 53 Bellani (ref_13) 2018; 63 ref_35 Wunsch (ref_3) 2020; 202 ref_33 ref_32 Neves (ref_45) 2023; 59 Wu (ref_2) 2024; 223 ref_38 ref_37 Huang (ref_44) 2014; 18 Karthick (ref_11) 2018; 154 Rahman (ref_40) 2022; 19 Cavanaugh (ref_29) 2007; 4 Arcentales (ref_18) 2015; 36 Byun (ref_48) 2019; 27 Arboleda (ref_15) 2022; 2022 ref_41 Cifrek (ref_12) 2009; 24 Salah (ref_46) 2022; 80 Czanner (ref_28) 2015; 112 Barwing (ref_42) 2013; 17  | 
    
| References_xml | – volume: 63 start-page: 1341 year: 2018 ident: ref_13 article-title: Measurement of Diaphragmatic Electrical Activity by Surface Electromyography in Intubated Subjects and Its Relationship with Inspiratory Effort publication-title: Respir. Care doi: 10.4187/respcare.06176 – ident: ref_32 doi: 10.1016/j.bspc.2022.104375 – volume: 2014 start-page: 78 year: 2014 ident: ref_20 article-title: Power index of the inspiratory flow signal as a predictor of weaning in intensive care units publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 109 start-page: 13 year: 2013 ident: ref_25 article-title: Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2012.08.015 – volume: 27 start-page: 407 year: 2019 ident: ref_48 article-title: Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study publication-title: Technol. Health Care doi: 10.3233/THC-199037 – ident: ref_41 doi: 10.3389/fmed.2022.814219 – volume: 53 start-page: 699 year: 2015 ident: ref_26 article-title: Time-varying signal analysis to detect high-altitude periodic breathing in climbers ascending to extreme altitude publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-015-1275-x – volume: 7 start-page: 202 year: 2012 ident: ref_36 article-title: Classification of complete blood count and haemoglobin typing data by a C4.5 decision tree, a naïve Bayes classifier and a multilayer perceptron for thalassaemia screening publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.03.007 – volume: 266 start-page: H1643 year: 1994 ident: ref_47 article-title: Physiological time-series analysis: What does regularity quantify? publication-title: Am. J. Physiol. – volume: 13 start-page: e64592 year: 2025 ident: ref_24 article-title: Prediction of Spontaneous Breathing Trial Outcome in Critically Ill-Ventilated Patients Using Deep Learning: Development and Verification Study publication-title: JMIR Med. Inform. doi: 10.2196/64592 – volume: 93 start-page: 1687 year: 2023 ident: ref_14 article-title: Cardiorespiratory measures shortly after extubation and extubation outcomes in extremely preterm infants publication-title: Pediatr. Res. doi: 10.1038/s41390-022-02284-5 – volume: 80 start-page: 1647 year: 2022 ident: ref_46 article-title: Diaphragmatic Function in Cardiovascular Disease: JACC Review Topic of the Week publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2022.08.760 – volume: 24 start-page: 327 year: 2009 ident: ref_12 article-title: Surface EMG based muscle fatigue evaluation in biomechanics publication-title: Clin. Biomech. doi: 10.1016/j.clinbiomech.2009.01.010 – volume: 10 start-page: e26220 year: 2024 ident: ref_1 article-title: Adherence to lung protective mechanical ventilation in patients admitted to a surgical intensive care unit and the associated increased mortality publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e26220 – ident: ref_17 doi: 10.3390/ijerph20054430 – volume: 4 start-page: 42 year: 2007 ident: ref_29 article-title: Approximate entropy detects the effect of a secondary cognitive task on postural control in healthy young adults: A methodological report publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-4-42 – volume: 1 start-page: e27 year: 2011 ident: ref_49 article-title: Decreased neuroautonomic complexity in men during an acute major depressive episode: Analysis of heart rate dynamics publication-title: Transl. Psychiatry doi: 10.1038/tp.2011.23 – volume: 2013 start-page: 5228 year: 2013 ident: ref_27 article-title: Study of the oscillatory breathing pattern in elderly patients publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 36 start-page: 1439 year: 2015 ident: ref_18 article-title: Classification of patients undergoing weaning from mechanical ventilation using the coherence between heart rate variability and respiratory flow signal publication-title: Physiol. Meas. doi: 10.1088/0967-3334/36/7/1439 – volume: 59 start-page: 33 year: 2023 ident: ref_45 article-title: Heart rate variability as a predictor of mechanical ventilation weaning outcomes publication-title: Heart Lung doi: 10.1016/j.hrtlng.2023.01.007 – ident: ref_21 doi: 10.1038/s41598-020-70814-4 – ident: ref_16 doi: 10.1109/EMBC46164.2021.9629815 – ident: ref_37 doi: 10.3390/s22165948 – volume: 18 start-page: 3301 year: 2025 ident: ref_23 article-title: Advances in Machine Learning for Mechanically Ventilated Patients publication-title: Int. J. Gen. Med. doi: 10.2147/IJGM.S515170 – volume: 25 start-page: 441 year: 2021 ident: ref_6 article-title: Surface EMG-based quantification of inspiratory effort: A quantitative comparison with Pes publication-title: Crit. Care doi: 10.1186/s13054-021-03833-w – ident: ref_33 doi: 10.1016/j.bspc.2021.103223 – volume: 67 start-page: 2721 year: 2020 ident: ref_39 article-title: Real-Time Quality Assessment of Long-Term ECG Signals Recorded by Wearables in Free-Living Conditions publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2020.2969719 – volume: 18 start-page: R21 year: 2014 ident: ref_44 article-title: Application of heart-rate variability in patients undergoing weaning from mechanical ventilation publication-title: Crit. Care doi: 10.1186/cc13705 – volume: 28 start-page: 18 year: 2009 ident: ref_30 article-title: Approximate entropy for all signals publication-title: IEEE Eng. Med. Biol. Mag. doi: 10.1109/MEMB.2009.934629 – ident: ref_22 doi: 10.3390/jcm13247634 – volume: 112 start-page: 7141 year: 2015 ident: ref_28 article-title: Measuring the signal-to-noise ratio of a neuron publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1505545112 – volume: 20 start-page: 273 year: 1995 ident: ref_34 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – ident: ref_35 doi: 10.1016/j.bspc.2021.102745 – volume: 17 start-page: R182 year: 2013 ident: ref_42 article-title: Electrical activity of the diaphragm (EAdi) as a monitoring parameter in difficult weaning from respirator: A pilot study publication-title: Crit. Care doi: 10.1186/cc12865 – volume: 139 start-page: 166 year: 2012 ident: ref_50 article-title: Cardio-respiratory coupling in untreated patients with major depression publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2012.01.035 – volume: 202 start-page: 1 year: 2020 ident: ref_3 article-title: Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202004-1385ED – volume: 38 start-page: 2017 year: 2012 ident: ref_8 article-title: Diaphragm electromyographic activity as a predictor of weaning failure publication-title: Intensive Care Med. doi: 10.1007/s00134-012-2700-3 – volume: 48 start-page: 176 year: 2019 ident: ref_9 article-title: Processing transcutaneous electromyography measurements of respiratory muscles, a review of analysis techniques publication-title: J. Electromyogr. Kinesiol. doi: 10.1016/j.jelekin.2019.07.014 – volume: 278 start-page: 2039 year: 2000 ident: ref_31 article-title: Physiological time-series analysis using approximate and sample entropy publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.2000.278.6.H2039 – volume: 16 start-page: R143 year: 2012 ident: ref_43 article-title: Neuroventilatory efficiency and extubation readiness in critically ill patients publication-title: Crit. Care doi: 10.1186/cc11451 – volume: 2022 start-page: 1923 year: 2022 ident: ref_15 article-title: Coherence Analysis between the Surface Diaphragm EMG Envelope Signal and the Respiratory Signal derived from the ECG in Patients assisted by Mechanical Ventilation publication-title: Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. – volume: 92 start-page: 1064 year: 2022 ident: ref_5 article-title: Diaphragmatic electromyography during a spontaneous breathing trial to predict extubation failure in preterm infants publication-title: Pediatr. Res. doi: 10.1038/s41390-022-02085-w – volume: 19 start-page: 20220012 year: 2022 ident: ref_40 article-title: Robustness of electrocardiogram signal quality índices publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2022.0012 – volume: 223 start-page: 107541 year: 2024 ident: ref_2 article-title: Rapid review of ventilator-induced diaphragm dysfunction publication-title: Respir. Med. doi: 10.1016/j.rmed.2024.107541 – volume: 29 start-page: 1033 year: 2007 ident: ref_4 article-title: Weaning from mechanical ventilation publication-title: Eur. Respir. J. doi: 10.1183/09031936.00010206 – volume: 6 start-page: 387 year: 2018 ident: ref_7 article-title: Assessing breathing effort in mechanical ventilation: Physiology and clinical implications publication-title: Ann. Transl. Med. doi: 10.21037/atm.2018.05.53 – volume: 26 start-page: 378 year: 2020 ident: ref_10 article-title: The validity of surface EMG of extra-diaphragmatic muscles in assessing respiratory responses during mechanical ventilation: A systematic review publication-title: Pulmonology doi: 10.1016/j.pulmoe.2020.02.008 – ident: ref_19 – ident: ref_38 doi: 10.3390/s23104759 – volume: 154 start-page: 45 year: 2018 ident: ref_11 article-title: Surface electromyography based muscle fatigue detection using high-resolution time-frequency methods and machine learning algorithms publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.10.024  | 
    
| SSID | ssj0023338 | 
    
| Score | 2.462034 | 
    
| Snippet | Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated... | 
    
| SourceID | doaj unpaywall proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | 6000 | 
    
| SubjectTerms | Aged Algorithms Biomarkers cardiorespiratory characterisation Decision making Deep learning diaphragm Diaphragm (Anatomy) Diaphragm - physiology Diaphragm - physiopathology Electrocardiography Electrocardiography - methods electromyography Electromyography - methods Entropy Extubation Female Heart rate Humans Machine Learning Male mechanical ventilation Middle Aged Muscle function Patients Physiology Respiration Respiration, Artificial - methods Respiratory failure Signal processing Signal Processing, Computer-Assisted time-varying spectral analysis Ventilator Weaning - methods Ventilators Weaning weaning outcome  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JbtRAEC2FyQFyiFiDQ0DNcrXiXjxuHxAiMFGElCECArlZvXk00sQzzCI038BPU-WNIAEnS-6Wl67qrle9vAfwymK25hz32MUTGSuuQmwRJsSWlz4Lysq0noc8Hw_PLtWHq_RqB8bdWRjaVtmNifVA7eeO5siPEWbwhIKreLP4HpNqFK2udhIappVW8K9rirFbsCuIGWsAuyej8cWnPgWTmJE1_EISk_3jFZ3bxJCf_BGVavL-vyHOPbi9qRZm-8PMZjei0Old2G_hI3vb2Pse7ITqPuzdIBV8AD9HjbLN9bZho5469n6K16WZXDNTedaWu3onalfl83RSP7jlKGGIZdm3YGjWhH3crLGNAqsFNGlrUW1NNq3YeaCDw2Tn2ZZ9pY1HM8Sunl00bK2rh3B5Ovry7ixuJRdiJ0XGY6-G2mhlSLkz5IgFyqGXVotggpFeeozm2IR0ftdKmxqbeiWdMl4Kn9hcGPkIBtW8Co-BcY1IJCSpU7lUWWm1yzUvU42uUFqlsghedE1eLBpmjQIzErJL0dslghMyRl-ByLDrG_PlpGj7VkGShCLFl3tTKszvbGZ9yU1pcz9U2vMIjjpTFm0PXRW__SmC530x9i1aMDFVmG-aOlmOgE9GcNC4QP8limNirIWK4GXvE__-j8P_f8ITuCNIV5hWu_IjGKyXm_AUwc7aPms9-Bd34QCG priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5V5QA9IN5NW5B5XANre7JxDgjxaFUhLSDBQm-RHTurldJs2YdgfwN_mpm81ErlxilSMkpiz1jzfX7MB_DCEVsrCulpiI90jBJD7AgmxE6WPg3odNLMQ04-jU-n-PEsOduBXmOz68DVtdSO9aSmy-rl75_bNzTgXzPjJMr-asWnLylxE3O_QQkqYwWHCQ6LCUoTDWuLCl01v5KKmor918HMPbi5qS_s9petqkup5-QO3O4wo3jbOvku7IT6HuxdqiR4H_4ct3I259u2BPW8EB_mdF3a2bmwtRfd86LZftqbfJ3Pmhd3hUkEAVjxI1ieKhGfN2sKxiAa1UzeT9S4UMxrMQl8WpidW23Fd95tVBFg9eJLW6J19QCmJ8ff3p_Gnc5CXGiVytjj2FiDluU6Q0YAoBx77YwKNljttacUTl3Ih3addol1iUddoPVa-ZHLlNUPYbde1GEfhDQEP8IoKTDTmJbOFJmRZWLI_6VDTCN41nd5ftGW08iJhrBf8sEvEbxjZwwGXAG7ubFYzvJuQOWsQ6gS-ri3JRKpc6nzpbSly_wYjZcRHPWuzPuoygmryhEjNBXB0-ExDSheJbF1WGxamzQjlKcjeNSGwPAnKIkNG4URPB9i4t_tOPgf7TiEW4olh3khLDuC3fVyEx4TDlq7J02U_wXblAic priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA98C4ECjKPa5r4lccJFWhVIbVUgoVyiuzYWUVss6vdDWj5C_xpxok3WhBISJwiJY5jyzOZb-yZbwBeaPTWypIaVPGYh4IKG2qECaGmlUmt0Fx2-5CnZ8nJWLy9kBdbWfwurBJd8br7SbssrBAtWBwxGdE8QuMcR3NTvfzq95LQ9uXoZKGduQo7iUQ0PoKd8dn54ecuqci_3RMKcfTuo6VL1HTd_GKGOrb-P0HMXbjWNnO1_qam0y2zc3wT1GbAfbTJl4N2pQ_K779xOf7PjG7BDY9JyWEvRLfhim3uwO4WU-Fd-HHUl8u5XPcU13VJ3tR4XajJJVGNIf552YW3bpq8ryddx574hCBAJp-sclsx5F27wqFa0lXldPFKnYiQuiGn1mUjO-GZrslHF800RUBsyHlPAbu8B-Pjow-vT0JfxyEsOUtpaESSqUwoVw7U5ggwqsRwnTGrrOKGG4QIHKeMwFNzLZWWRvBSKMOZiXXOFN-DUTNr7AMgNEN4Y2NZipyLtNJZmWe0khnKV6WFSAN4tlnWYt7TdRTo5ri1L4a1D-CVW_ChgWPY7m7MFpPCK2zh6hwyiR83qhLoNOpUm4qqSucmEZmhAexvxKXwar8sEAvT2CFAFsDT4TEqrDuFUY2dtX2bNEcUyQO434vZMBJB0dvOmAjg-SB3f5_Hw39q9QiuM1ez2J2k5fswWi1a-xiB1Eo_8bryE-YmF_8 priority: 102 providerName: Unpaywall  | 
    
| Title | Electromyographic Diaphragm and Electrocardiographic Signal Analysis for Weaning Outcome Classification in Mechanically Ventilated Patients | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41094824 https://www.proquest.com/docview/3261089372 https://www.proquest.com/docview/3261791593 https://www.mdpi.com/1424-8220/25/19/6000/pdf?version=1759133024 https://doaj.org/article/3696252a3daf4114b7bdf1afb9d648d1  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BeIA9oPEd2Crz8Rotji-N87ixlgmppQIK5SmyY2eq1GXT2gr1b9g_zdlOoyKBeOHFkWwrsu_Out_543cA7zRFa1XFDS3xRMTI0caaYEKseW1yi1pkfh9yNO6fT_HjLJvtpPpyd8ICPXAQ3LHLN5dmqRJG1UjgXefa1FzVujB9lMYHPokstsFUG2oJirwCj5CgoP546d5nkmtPfvM-nqT_T8hyH-6vm2u1-akWix1vMzyAhy1MZCdheI_gjm0ew_4OeeATuB2EDDaXm8A6Pa_Y2Zy-N-rikqnGsLa98jdOt12-zC_8j1suEkaYlX23yu2OsE_rFdmfZT5RprtC5LXG5g0bWfdA2OlzsWHf3AWjBWFUwyaBlXX5FKbDwdf353GbWiGuRJrz2GBfKonKZei0Bfn8um-ElqlVliQtDHltEqF7p6uFzpTODIoKlRGpSXRB2ngGe81VY18A45IQh02yCguBea1lVUheZ5JUXmvEPII3W5GX14FBo6TIw-ml7PQSwalTRtfBkV77CjKFsjWF8l-mEMHhVpVluxKXJcFTnjhQlkbwumumNeQORlRjr9ahT14QsBMRPA8m0I0EOQXAMsUI3nY28fd5vPwf83gFD1KXZdidfRWHsLe6Wdsjgj4r3YO7-SynUg4_9ODe6WA8-dzzlk_lCCXVTceTkx-_AHv7COY | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6V8lD6UHHjUmC5Hq16D8frB4SAtkppU5BoIW9m17uOIqVOyKEqv4H_wm9kxkdaJOCtT5bija_5ZuebPeYDeGUxW8tz7tDFIxkqrnxokSaElhcu8crKuBqH7J10umfqYz_ur8Gvdi8MLats-8Sqo3bjnMbId5Fm8IiCq3g7-RGSahTNrrYSGjUsjvzyAlO22ZvDPbTvayEO9k8_dMNGVSDMpUh46FRHG60MiVP6FMNd0XHSauGNN9JJhwFLYpKPNMhKGxsbOyVzZZwULrKpMBKvewNuKol9CfpP0r9M8PB_uq5eJGUa7c5oVygSiuiPmFdJA_yNz27CxqKcmOWFGY2uxLiD27DVkFP2rkbTHVjz5V3YvFKy8B783K91c86Xda3rYc72hnicmsE5M6Vjzfm8WufaNvkyHFQXbiqgMGTK7Js3NCbDPi3maAHPKnlOWrhUYYUNS9bztC2ZUDRasq-0rGmEzNixz3Ut2Nl9OLuWT_8A1stx6R8B4xp5jo_iXKVSJYXVeap5EWsEWmGVSgJ40X7ybFLX7cgw3yG7ZCu7BPCejLFqQKW2qx_G00HWeG5Ggocixps7UyjMHm1iXcFNYVPXUdrxAHZaU2aN_8-yS7QG8Hx1Gj2XpmNM6ceLuk2SIp2UATysIbB6EsUx7dZCBfByhYl_v8f2_x_hGWx0T3vH2fHhydFjuCVIwZjm1dIdWJ9PF_4J0qq5fVphmcH363ae38g9Nd0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgF9QNwECpjrMdr4yMZ5QAjYrlpKSyVo2bdgx85qpW122UPV_gb-Eb-OmRzbIgFvfYoUO-fMeL6xx_MBvLIYreU5d2jikQwVVz60CBNCywuXeGVlXM1DHhx2d4_Vx0E82IBf7V4YSqtsx8RqoHaTnObIOwgzeETOVXSKJi3iqNd_O_0REoMUrbS2dBq1iuz71RmGb_M3ez2U9Wsh-jtfP-yGDcNAmEuR8NCprjZaGSKq9Cm6vqLrpNXCG2-kkw6dl8SAHyGRlTY2NnZK5so4KVxkU2Ek3vcKXE2kTCmdMBmcB3t4na4rGWFj1JnTDlEEF9Ef_q-iCfgbtt2C68tyalZnZjy-4O_6t-BmA1TZu1qzbsOGL-_A1oXyhXfh507NoXO6qutej3LWG-FxZoanzJSONe15lfPadvkyGlY3bqqhMETN7Js3ND_DPi8XKA3PKqpOSmKq9IaNSnbgaYsyadR4xU4oxWmMKNmxo7ou7PweHF_Kr78Pm-Wk9A-BcY2Yx0dxrlKpksLqPNW8iDUqXWGVSgJ40f7ybFrX8Mgw9iG5ZGu5BPCehLHuQGW3qxOT2TBrrDgj8kMR48OdKRRGkjaxruCmsKnrKu14ANutKLNmLJhn55obwPN1M1oxLc2Y0k-WdZ8kRWgpA3hQq8D6TRTHEFwLFcDLtU78-zse_f8VnsE1NJvs097h_mO4IYjMmJbY0m3YXMyW_gkirIV9Wqkyg--XbTu_ATipOiA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA98C4ECjKPa5r4lccJFWhVIbVUgoVyiuzYWUVss6vdDWj5C_xpxok3WhBISJwiJY5jyzOZb-yZbwBeaPTWypIaVPGYh4IKG2qECaGmlUmt0Fx2-5CnZ8nJWLy9kBdbWfwurBJd8br7SbssrBAtWBwxGdE8QuMcR3NTvfzq95LQ9uXoZKGduQo7iUQ0PoKd8dn54ecuqci_3RMKcfTuo6VL1HTd_GKGOrb-P0HMXbjWNnO1_qam0y2zc3wT1GbAfbTJl4N2pQ_K779xOf7PjG7BDY9JyWEvRLfhim3uwO4WU-Fd-HHUl8u5XPcU13VJ3tR4XajJJVGNIf552YW3bpq8ryddx574hCBAJp-sclsx5F27wqFa0lXldPFKnYiQuiGn1mUjO-GZrslHF800RUBsyHlPAbu8B-Pjow-vT0JfxyEsOUtpaESSqUwoVw7U5ggwqsRwnTGrrOKGG4QIHKeMwFNzLZWWRvBSKMOZiXXOFN-DUTNr7AMgNEN4Y2NZipyLtNJZmWe0khnKV6WFSAN4tlnWYt7TdRTo5ri1L4a1D-CVW_ChgWPY7m7MFpPCK2zh6hwyiR83qhLoNOpUm4qqSucmEZmhAexvxKXwar8sEAvT2CFAFsDT4TEqrDuFUY2dtX2bNEcUyQO434vZMBJB0dvOmAjg-SB3f5_Hw39q9QiuM1ez2J2k5fswWi1a-xiB1Eo_8bryE-YmF_8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromyographic+Diaphragm+and+Electrocardiographic+Signal+Analysis+for+Weaning+Outcome+Classification+in+Mechanically+Ventilated+Patients&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Alejandro+Arboleda&rft.au=Manuel+Franco&rft.au=Francisco+Naranjo&rft.au=Beatriz+Fabiola+Giraldo&rft.date=2025-09-29&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=25&rft.issue=19&rft.spage=6000&rft_id=info:doi/10.3390%2Fs25196000&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3696252a3daf4114b7bdf1afb9d648d1 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |