Electromyographic Diaphragm and Electrocardiographic Signal Analysis for Weaning Outcome Classification in Mechanically Ventilated Patients
Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electroc...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 25; no. 19; p. 6000 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
29.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s25196000 |
Cover
| Summary: | Early prediction of weaning outcomes in mechanically ventilated patients has significant potential to influence the duration of treatment as well as associated morbidity and mortality. This study aimed to investigate the utility of signal analysis using electromyographic diaphragm (EMG) and electrocardiography (ECG) signals to classify the success or failure of weaning in mechanically ventilated patients. Electromyographic signals of 40 subjects were recorded using 5-channel surface electrodes placed around the diaphragm muscle, along with an ECG recording through a 3-lead Holter system during extubation. EMG and ECG signals were recorded from mechanically ventilated patients undergoing weaning trials. Linear and nonlinear signal analysis techniques were used to assess the interaction between diaphragm muscle activity and cardiac activity. Supervised machine learning algorithms were then used to classify the weaning outcomes. The study revealed clear differences in diaphragmatic and cardiac patterns between patients who succeeded and failed in the weaning trials. Successful weaning was characterised by a higher ECG-derived respiration amplitude, whereas failed weaning was characterised by an elevated EMG amplitude. Furthermore, successful weaning exhibited greater oscillations in diaphragmatic muscle activity. Spectral analysis and parameter extraction identified 320 parameters, of which 43 were significant predictors of weaning outcomes. Using seven of these parameters, the Naive Bayes classifier demonstrated high accuracy in classifying weaning outcomes. Surface electromyographic and electrocardiographic signal analyses can predict weaning outcomes in mechanically ventilated patients. This approach could facilitate the early identification of patients at risk of weaning failure, allowing for improved clinical management. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1424-8220 1424-8220 |
| DOI: | 10.3390/s25196000 |