Prediction of Flash Point Temperature of Pure Components Using a Quantitative Structure-Property Relationship Model
In this work, a general Quantitative Structure–Property Relationship (QSPR) model ($\rm{ R^2 = 0.9669}$, $\rm{ Q_{{\rm{LOO}}}^{\rm{2}} = 0.9663}$, and $\rm{ s = 12.691}$) for the prediction of flash points of 1030 pure compounds is developed. Genetic Algorithm‐based Multivariate Linear Regression (G...
Saved in:
Published in | QSAR & combinatorial science Vol. 27; no. 6; pp. 679 - 683 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.06.2008
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1611-020X 1611-0218 |
DOI | 10.1002/qsar.200730110 |
Cover
Summary: | In this work, a general Quantitative Structure–Property Relationship (QSPR) model ($\rm{ R^2 = 0.9669}$, $\rm{ Q_{{\rm{LOO}}}^{\rm{2}} = 0.9663}$, and $\rm{ s = 12.691}$) for the prediction of flash points of 1030 pure compounds is developed. Genetic Algorithm‐based Multivariate Linear Regression (GA‐MLR) technique is used to select four chemical structure‐based molecular descriptors from a pool containing 1664 molecular descriptors. |
---|---|
Bibliography: | istex:FE5ABE14EC57BB79139742B8695141D70389F385 ArticleID:QSAR200730110 ark:/67375/WNG-5TNNXGS0-C |
ISSN: | 1611-020X 1611-0218 |
DOI: | 10.1002/qsar.200730110 |