Prediction of Flash Point Temperature of Pure Components Using a Quantitative Structure-Property Relationship Model

In this work, a general Quantitative Structure–Property Relationship (QSPR) model ($\rm{ R^2 = 0.9669}$, $\rm{ Q_{{\rm{LOO}}}^{\rm{2}} = 0.9663}$, and $\rm{ s = 12.691}$) for the prediction of flash points of 1030 pure compounds is developed. Genetic Algorithm‐based Multivariate Linear Regression (G...

Full description

Saved in:
Bibliographic Details
Published inQSAR & combinatorial science Vol. 27; no. 6; pp. 679 - 683
Main Authors Gharagheizi, Farhad, Alamdari, Reza Fareghi
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.06.2008
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN1611-020X
1611-0218
DOI10.1002/qsar.200730110

Cover

More Information
Summary:In this work, a general Quantitative Structure–Property Relationship (QSPR) model ($\rm{ R^2 = 0.9669}$, $\rm{ Q_{{\rm{LOO}}}^{\rm{2}} = 0.9663}$, and $\rm{ s = 12.691}$) for the prediction of flash points of 1030 pure compounds is developed. Genetic Algorithm‐based Multivariate Linear Regression (GA‐MLR) technique is used to select four chemical structure‐based molecular descriptors from a pool containing 1664 molecular descriptors.
Bibliography:istex:FE5ABE14EC57BB79139742B8695141D70389F385
ArticleID:QSAR200730110
ark:/67375/WNG-5TNNXGS0-C
ISSN:1611-020X
1611-0218
DOI:10.1002/qsar.200730110